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a b s t r a c t 

In this paper, we address a real problem of packing boxes into a multi-compartment container, in which 

the boxes must be delivered to customers in a predefined route. This problem arises, for example, in the 

distribution of beverages (packed in “boxes”) by trucks whose container has multiple compartments. The 

objective is to find a feasible packing plan that minimizes the handling of boxes inside the container 

along the whole truck route. The following practical constraints must be met: orientation of the boxes, 

cargo stability, load bearing strength of the boxes and load balancing. To the best of our knowledge, 

this is the first study focusing on a vehicle packing problem with multi-compartment containers in the 

context of beverage distribution. To solve this problem, we present a hybrid approach which consists of 

a heuristic method based on the generation of horizontal layers and on the solution of mixed integer 

linear programming models. Computational tests were performed with this approach and a large variety 

of instances based on real data from a soft drink company. The results show that the approach is able to 

find feasible solutions for all instances considered under all constraints, contrary to what was observed 

in practice with the manual procedures available in the company. In practice, if a feasible solution is 

not obtained, it is necessary to change the predefined route plan and/or to consider an additional new 

delivery route and/or to use a solution that violates some of the constraints involved. In this sense, the 

proposed solution approach has good potential for being embedded into existing expert and intelligent 

systems for supporting the decision making process. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Freight transportation is an important activity in several sec-

ors, especially for companies that need to collect different types of

roducts from their suppliers and/or that need to deliver different

ypes of products to their customers (e.g., milk run ). Together with

he activities of warehousing and handling, freight transportation

ermeates the costliest sectors in logistics, and therefore it must be

erformed efficiently, with the products being collected/delivered

n time, within the desired conditions and with reduced costs. The

osts of freight transportation can be related to the delivery routes

e.g., Gendreau, Iori, Laporte & Martello, 2006 ), to the production
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lanning and lot sizing (e.g., Norden & Velde, 2005 ), and to the

ontainer loading (e.g., Chen, Lee & Shen, 1995; Terno, Scheithauer,

ommerweiss & Riehme, 20 0 0 ). 

In this paper, we investigate a real Container Loading Problem

rising in the beverage industry. This problem was motivated by a

ase study carried out in a soft drink company in Brazil, but similar

oading problems are also found in other beverage companies. This

ompany is a large producer that maintains a high degree of in-

ernational brand recognition, and it bottles very well-known soft

rinks in different countries. In the present problem, the company

eeds to deliver its products daily to a set of customers, and it has

vailable a given type of vehicle/truck whose container has multi-

le compartments (some of them of different sizes). This type of

ontainer is useful, e.g., when one aims at increasing the cargo

tability or separation. The truck must then perform a delivery

oute known in advance (determined by the vehicle routing system
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of the company), and all the boxes required by the customers in

the route must be packed inside the container. When packing the

cargo, several practical constraints must be met, such as the orien-

tation of the boxes, the cargo stability, the load bearing strength of

the boxes and the load balancing. The main objective is to find a

feasible packing plan with all the boxes required by the customers

in the predefined route, and, if this solution is found, then to min-

imize the handling of boxes inside the container along the truck

route. 

It is important to note that the aforementioned practical con-

straints must be met along the whole truck route, and not only at

its departure from the depot (see, e.g., Junqueira, Oliveira, Carrav-

illa & Morabito, 2013 ). Since this problem involves “loss of mass”

along the delivery route, it must be ensured that the boxes re-

quired by a customer, once dropped-off, neither cause cargo insta-

bility to the boxes required by the remaining customers nor cause

the center of gravity of the remaining cargo to lay on an unsafe

position. 

This problem of loading boxes in a multi-compartment vehicle

differs from most Container Loading Problems treated in the litera-

ture. It can also be seen as a problem in which multiple containers

or pallets are available for packing the boxes (see, e.g., Chan, Bhag-

wat, Kumar, Tiwari & Lam, 2006; Chen et al., 1995; Eley, 2003;

Alonso, Alvarez-Valdes, Iori & Parreño, 2019 ). However, it consid-

ers several objects (compartments) in a same vehicle respecting,

for example, the load balancing and/or multiple destinations of the

boxes. It is also related to the Master Bay Plan Problem, which con-

sists in determining stowage plans for containers in a ship (see,

e.g., Pacino & Jensen, 2012; Sciomachen & Tanfani, 2003 , 2007;

Araújo, Chaves, Salles Neto & Azevedo, 2016 ). In that problem, the

containers, the ship and its bays can be viewed as the items, the

object and its compartments of the present problem, respectively.

However, these two problems also have major differences, as dis-

cussed in Section 2 . 

According to Wäscher, Haussner and Schumann (2007) , this

problem can be seen as an extended three-dimensional packing

problem, once it extends the concept of packing/cutting items in

objects, for example, due to the minimization of the handling of

items inside objects along a route. However, the associated prob-

lem of how to pack boxes (beverage packaging) inside objects

(compartments of the vehicle) does not fit perfectly the typology

proposed by the authors, once it does not address the maximiza-

tion of the outputs (selection of items to be packed in the objects)

or the minimization of the inputs (selection of objects to pack the

items), but all the items and objects must be used for the packing,

while satisfying the related constraints. 

In the day to day of the beverage company, it is hard to ob-

tain in practice feasible solutions for this problem with the manual

procedures that the company has available, which usually entail

a lot of handling of boxes inside the container due to difficulties

with the arrangement of all boxes inside the compartments along

the vehicle route, besides respecting other problem constraints. If a

feasible solution is not obtained, it is necessary to change the pre-

defined route plan and/or to consider an additional new delivery

route and/or to use a solution that violates some of the constraints

involved. In this sense, the development of solution approaches for

being embedded into existing expert and intelligent systems may

support the decision making process. 

We present in this paper a hybrid solution approach that con-

sists of a heuristic method based on the generation of horizontal

layers and on the solution of mixed integer linear programming

models. The used formulations contemplate several practical pack-

ing considerations, as the aforementioned ones. The proposed so-

lution approach is novel in combining exact and heuristic methods

to tackle a real container loading variant for the first time, while at

the same time inspired by the way that the beverage company that
otivated this study packs the boxes inside the container, and we

elieve that it can be directly used, or straightforwardly modified

o be used, in other related distribution settings. 

To the best of our knowledge, this is the first study focusing

n a vehicle packing problem with multi-compartment containers

n the context of beverage distribution, and it contributes to the

eld by describing in detail what the practical problem is so that

uture researchers may use this problem instead of a stylized one

o motivate their research. The paper also provides practical guide-

ines in the development and management of expert and intelli-

ent systems for loading (unloading) products into (from) a multi-

ompartment container along the route of its truck. These guide-

ines are based on the design, development and testing of compu-

ational procedures based on operations research techniques and

nspired on a real-life case study of the problem. 

This work is organized as follows. In Section 2 , the related lit-

rature is briefly reviewed. In Section 3 , the problem addressed

n this paper is properly defined. In Section 4 , the hybrid solu-

ion approach to the problem is presented. In Section 5 , the results

f some computational tests with the proposed solution approach

nd a large variety of instances based on real data provided by a

everage company are analyzed and discussed. Finally, in Section 6 ,

he concluding remarks and some perspectives for future research

re presented. 

. Related literature 

Packing smaller items into larger objects is a frequently en-

ountered problem when dealing with cargo transportation, and it

s normally a complex task when efficiency is longed-for. The ar-

angement of items inside an object (i.e., a packing pattern) must

eet at least two basic constraints (the so-called geometrical con-

traints): the items are packed completely inside the object and

he items do not overlap each other. The Container Loading Prob-

em is a three-dimensional packing problem in which the boxes

items) need to be placed inside containers (objects) respecting

ne or more criteria. According to Bortfeldt and Wäscher (2013) ,

ith few exceptions, most studies consider rectangular items that

an only be placed orthogonally into also rectangular containers. 

Realistic Container Loading Problems normally take into con-

ideration other practical aspects, such as the orientation of the

oxes, the weight distribution within the container, the multi-

le destinations, the cargo stability and the load bearing strength

f the boxes, among others ( Bischoff & Ratcliff, 1995 ). Examples

f studies that tackle Container Loading Problems with some of

hese practical considerations include, e.g., Bischoff (2006), Ceschia

nd Schaerf (2013) and Ramos, Oliveira, Gonçalves and Lopes

2016), Davies and Bischoff (1999), Junqueira, Morabito and Ya-

ashita (2012a), Junqueira, Morabito and Yamashita (2012b), Silva,

oma and Maculan (2003) . A compilation and discussion of stud-

es that addressed several practical constraints can be found in

ortfeldt and Wäscher (2013) . 

Container Loading Problems generalize the well-known Knap-

ack Problem, and therefore they are also NP-Hard. In general, only

mall practical instances of these problems can be solved with

xact algorithms (e.g., Hifi, 2004; Lai, Xue & Xu, 1998; Martello,

isinger & Vigo, 20 0 0 ). Due to their inherent complexity, most

olution methods for Container Loading Problems are heuristics,

hich can be classified into constructive heuristics (e.g., Araújo

 Armentano, 2007; Bischoff, Janetz & Ratcliff, 1995; George &

obinson, 1980 ), metaheuristics (e.g., Gehring & Bortfeldt, 1997;

onçalves & Resende, 2012; Moura & Oliveira, 2005; Parreño,

lvarez-Valdes, Oliveira & Tamarit, 2010; Ramos, Silva & Oliveira,

018 ) and tree-search heuristics (e.g., Araya & Riff, 2014; Eley,

002; Fanslau & Bortfeldt, 2010; Pisinger, 2002 ). There is also a

lass of approximate algorithms that are able to ensure a given
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Fig. 1. Example of a multi-compartment container. 
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orst-case performance, for example, in what concerns the objec-

ive function of the problem (e.g., Hifi, 2002; Miyazawa & Wak-

bayashi, 1999 ). A recent comparative review of algorithms for

ontainer Loading Problems can be found in Zhao, Bennell, Bekta ̧s

nd Dowsland (2016) . 

According to Pisinger (2002) , these heuristics can also be clas-

ified into four fundamental types related to how the boxes are

rranged inside the container: 

(a) Wall-building . The boxes are arranged in horizontal (e.g.,

Bischoff et al., 1995; Terno et al., 20 0 0 ) or vertical (e.g.,

Davies & Bischoff, 1999; George & Robinson, 1980 ) layers; 

(b) Stack-building . Boxes are arranged in vertical columns (e.g.,

Gehring & Bortfeldt, 1997; Haessler & Talbot, 1990 ); 

(c) Guillotine Cutting . Boxes are arranged in such a way that they

could be entirely separated by means of a series of guillotine

cuts (e.g., Morabito & Arenales, 1994 ); 

(d) Cuboid Arrangement . Boxes of the same type and with the

same orientation are arranged in blocks (e.g., Bortfeldt,

Gehring & Mack, 2003; Eley, 2002 ). 

The arrangement of boxes in layers is frequently employed

hen solving Container Loading Problems. This type of arrange-

ent makes it easy to load the boxes, once it enables a less com-

lex packing pattern. In the case where the layers are horizontal,

hey also favor the cargo stability ( Bischoff & Ratcliff, 1995 ). When

acking horizontal layers, in some cases it is possible to separate

hem with thin sheets (dividers) of wood or plastic in order to in-

rease the cargo stability and/or separate the boxes. 

In the Combinatorial Optimization literature, studies that ad-

ress multi-compartment containers/vehicles are frequently re-

ated to Capacitated Vehicle Routing Problems, in which routes

eed to be defined respecting the capacities of the vehicle com-

artments (see, e.g., Henke, Speranza & Wäscher, 2015; Lahyani,

oelho, Khemakhem, Laporte & Semet, 2015 ). To the best of our

nowledge, studies addressing these problems, although they con-

ider capacitated compartments (e.g., with relation to the weight

r volume), they do not contemplate geometrical constraints taking

nto account more than one spatial dimension, and therefore they

re not considered Container Loading Problems (see, e.g., Avella,

occia & Sforza, 2004; Derigs et al., 2011 ). 

Another related problem, the Master Bay Plan Problem, which

onsists in determining stowage plans for containers in a ship,

an also be seen as a Container Loading Problem (see, e.g., Pacino

 Jensen, 2012; Sciomachen & Tanfani, 20 03 , 20 07; Araújo et al.,

016 ). In this problem, the containers, the ship and its bays can be

nderstood as items, object and compartments, respectively. The

ollowing characteristics, which are typical of this problem, differ

rom the ones addressed in this study: (a) the height of a pack-

ng pattern is not limited by physical walls, but only by load bal-

ncing and/or stability constraints; (b) the containers are standard-

zed, they have the smaller sides with the same dimension and fre-

uently the same height. Therefore, the variety of containers with

elation to their spatial dimensions is low (typically there are only

wo or three container types); (c) due to the characteristics of ship

nd containers, the containers are arranged in independent stacks

ith fixed orientation. Therefore, the resulting packing patterns are

uillotine along the height, and, due to the container sizes, they

re frequently also guillotine along the other two dimensions; (d)

he larger side of a container is relatively large and typically oc-

upies between 50% and 100% of the smaller side of the bay; (e)

iven the metallic structure of the containers, there is no concern

ith damages of a container due to the pressure applied by other

ontainers placed above it. 

As mentioned before, the problem of loading boxes in a multi-

ompartment vehicle can also be seen as a Container Loading Prob-

em in which multiple containers or pallets are available for pack-
ng the boxes. To the best of our knowledge, unlike the problem

ddressed in this study, these problems do not consider several

bjects in a same vehicle respecting, for example, the load balanc-

ng and/or multiple destinations of the boxes (see, e.g., Chen et al.,

995; Chan et al., 2006; Eley, 2003 ). 

. Problem definition 

Consider a vehicle that has a set of compartments which are

vailable to cargo packing. These compartments can be directly ac-

essed through doors on the vehicle sides, and they are arranged in

ontiguous rows. The compartments have all the same length and

idth, but they can have different heights due to the axles and

heels of the truck. There are two rows of compartments along

he smaller side of the vehicle, while along the larger side the

umber of rows can vary according to their types. Fig. 1 shows

 scheme of a multi-compartment container. For the sake of sim-

licity, in this figure all the compartments have equal sizes. 

All the compartments and boxes are rectangular hexahedrons

cuboids). The boxes are rigid, they have different dimensions and

hey must be orthogonally arranged inside the vehicle compart-

ents without necessarily obeying a specific pattern and/or in hor-

zontal layers. Each layer has already defined an optimal packing

attern for boxes of a same type (i.e., with the same dimensions,

eight and load bearing strength). The layers are separated from

ach other (or from other unbound items) by rigid sheets that have

he same length and width of the compartment. 

The vehicle is loaded in a logistic cell (origin) and its route is

redefined by a sequence of stops (destinations) that it must fol-

ow to serve the customers. This route is previously determined by

 delivery routing system of the company (in the studied company,

here may be hundreds of vehicles). The demands of all customers

re known in advance. All the boxes required by the customers in

he predefined route must be packed inside the vehicle and the

ollowing constraints must be met: 

C1: Boxes orientation . The boxes have fixed vertical orientation; 

C2: Cargo stability . The boxes must be stabilized along

the whole route, either by other boxes or by the con-

tainer/compartment floor and walls. A layer offers support

to the boxes placed above it, provided that there is a mini-

mum (predefined) number of boxes in this layer; 

C3: Load bearing strength of the boxes . In any stacking, a box

placed below other boxes must have enough resistance to

support the pressure that is applied over its top face; 

C4: Load balancing . The vehicle must be well-balanced along the

whole route, with relation to both axes x and y , i.e., the real

position of the center of gravity of the cargo must not be far

away from the ideal position of the center of gravity of the

vehicle. Unlike constraints C1-C3, which are hard constraints

and must be always met, constraints C4 are soft, i.e., a not
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Fig. 2. Examples of horizontal layers. 

Fig. 3. Example of packing pattern for one of the container compartments. 
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so well-balanced vehicle is not prevented from being used

to serve the customers. 

In this study, our objective is to minimize the handling of boxes

inside the vehicle compartments along its route among all fea-

sible solutions that pack all boxes into the vehicle. A box from

stop k ′ (i.e., that must be unloaded at stop k ′ ) needs to be re-

located in a stop k only if it is placed above boxes from stop k ,

with k ′ > k . As constraints C4 are soft, the load balancing devi-

ations are also penalized in the objective function. According to

Wäscher et al. (2007) , this problem can be seen as an extended

three-dimensional packing problem, once it extends the concept of

packing/cutting items in objects, for example, due to the minimiza-

tion of the handling of items inside objects along a route. How-

ever, the associated problem of how to pack boxes inside objects

does not fit perfectly the typology proposed by the authors, once

it does not address the maximization of the outputs (selection of

items to be packed in the objects) or the minimization of the in-

puts (selection of objects to pack the items), but all the items and

objects must be used for the packing, while satisfying the related

constraints. 

4. Proposed solution approach 

The proposed solution approach is a hybrid method with a

heuristic that aims at packing the boxes in horizontal layers, sepa-

rated by physical dividers which are often used in the distribution

of beverages to protect the loaded cargo and help provide verti-

cal stability, with the help of simplified mathematical models of

the problem. The following types of horizontal layers are consid-

ered: complete , which already have a predefined packing pattern,

are made up of boxes of the same type and there are no stacked

boxes; incomplete , which do not have a predefined packing pattern

and are made up of boxes that are not in complete layers ( residual

boxes). The length and width of a complete or incomplete layer

are the same of a compartment. The height of a complete layer is

defined by the box type it contains, while the height of an incom-

plete layer is given by the highest position of one of the boxes that
t contains. Fig. 2 shows examples of complete (patterns a and b)

nd incomplete (pattern c) layers. 

Fig. 3 shows on the left an example of packing pattern for a

ontainer compartment with the layers shown in Fig. 2 (the yellow

heets represent the physical dividers), while on the right it shows

 real packing pattern using horizontal layers for packing bever-

ges in a compartment. Note that a complete layer always allows

he placement of a divider above it, and therefore it can provide

ertical stability for the boxes placed above it. 

The heuristic presented here is inspired by the way that the

everage company that motivated this study packs the boxes in-

ide the container, i.e., placing them in complete layers whenever

ossible. It assumes that: 

A1: The relocation of boxes at a stop consists of removing and

temporarily placing them in a zone outside the vehicle. Im-

mediately after all boxes from this stop are unloaded from

the vehicle, the relocated boxes are loaded back; 

A2: The relocation of boxes is penalized by a function of the

number and weight of the relocated boxes. Additionally, as it

was observed in practice, minimizing the handling of boxes

is considered more important than minimizing the load bal-

ancing deviations; 

A3: The position of the boxes placed inside the vehicle (i.e.,

their front-bottom-left corners), defined with relation to the

origin of a Cartesian coordinate system (see Fig. 1 ) before

the vehicle performs its delivery route: 

– cannot be changed along the route with relation to both

axes x and y ; 

– can only be changed along the route with relation to axis

z , in the case in which all boxes of a given layer, placed

below, are unloaded from the vehicle. In this case, the

boxes above this layer in the same compartment are all

moved down until they are supported by another layer

or by the compartment floor. 

A4: Any box can always be reached, even though this implies

in relocating other boxes; 
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Fig. 4. Basic steps of the proposed heuristic. 
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A5: The position of the center of gravity of a layer is located at

the geometric center of this layer; 

A6: The container, the boxes and the dividers placed between

layers are all rigid bodies; 

A7: The weight above a layer is homogeneously distributed

among the boxes on this layer; 

A8: The load bearing strength of a box is homogeneously dis-

tributed over the area of its top face (i.e., each box supports

the same admissible pressure in each point of its top face); 

A9: The density of each box is homogeneous; 

A10: The bottom faces of all boxes must be completely sup-

ported by other boxes, layers or the compartment floor (i.e.,

full support); 

A11: For stability reasons, as it was observed in practice, incom-

plete layers cannot be placed below any complete layer in

the same compartment; 

A12: The walls of the compartments, as well as the dividers

placed between layers, have negligible thicknesses; 

A13: The boxes on a complete layer cannot be stacked. 

In the following, the steps that compose the proposed heuristic

re explained in detail. For reasons of organization, the definitions

nd notation used are presented in Appendix A , the pseudocodes

re presented in Appendix B , and the mathematical formulations

re presented in Appendix C . 

The proposed heuristic can be divided into four basic steps,

hich are shown in Fig. 4 . 

.1. Basic step 1 

.1.1. Generating the complete layers 

Initially, given the available number of boxes of each type, we

ry to generate the largest possible number of complete layers. To

his end, boxes of the same type are assigned to layers in inverse

rder of the vehicle stops, while they can be packed in these lay-

rs. Fig. 8 (see Appendix B ) describes the procedure gComp () that

s used for generating the complete layers. Thereby, the residual

oxes, that can only be placed on the top of the compartments

ue to stability reasons (see assumption A11 at the beginning of

ection 4 ), tend to be those ones required by the initial stops. Note

hat a complete layer already has a predefined packing pattern and,

herefore, it is not necessary to define the position and orientation

f the boxes while generating them. 

.2. Basic step 2 

.2.1. Generating the incomplete layers 

The incomplete layers are generated using a constructive proce-

ure respecting the practical constraints of the problem. Fig. 9 (see

ppendix B ) describes the procedure gInc () that is used to generate

he incomplete layers. First, the residual boxes are sorted in a list

n inverse order of the vehicle stops. As a first tiebreaker, we use

he height of the boxes in decreasing order, and, if necessary, as a

econd tiebreaker, we use the load bearing strength of the boxes

n decreasing order. 

Following the defined order for the residual boxes, we try to

equentially pack them in a same incomplete layer. If after this at-

empt there are still not packed residual boxes, a new incomplete

ayer is generated and the process is repeated with this new layer

nd with the residual boxes still not packed. To try to define the

osition and the orientation of the residual boxes in an incomplete
ayer, the First Fit (FF) and Best Fit (BF) heuristics (described ahead)

re used. Fig. 10 (see Appendix B ) describes the procedure pRes ()

hat is used to try to define the orientation and position of the

esidual boxes inside the incomplete layers. 

The incomplete layers must have their heights limited to the

eights of the compartments (that can be different). To this end,

or every new incomplete layer that is generated, a new compart-

ent is chosen as reference to limit the height of this layer. The

ompartments are chosen by their heights in increasing order, and,

ith this, we seek to allow that the first generated layers fit in

 larger variety of compartments, thus increasing the chances of

nding a feasible and efficient packing. 

Two attempts of packing the residual boxes are performed. In

ne of the attempts the position and orientation of the residual

oxes in the incomplete layers are defined using the FF heuris-

ic, while in the other attempt the BF heuristic is used. If both at-

empts lead to a feasible solution (i.e., all residual boxes are packed

n the incomplete layers), as a tiebreaker, we choose the solution

hose sum of the heights of the incomplete layers is smaller. 

.2.2. First fit and best fit heuristics for packing the residual boxes 

Initially, only position (0,0,0) of an incomplete layer is available

nd each residual box placed on the layer defines up to nine po-

itions available for packing the next residual boxes (see Fig. 6 in

ppendix A ). Every packed box also makes unavailable the posi-

ions it occupies. 

In order to try to define the position and orientation that the

ext residual box is packed in an incomplete layer, two heuristics

re used: 

(a) First Fit (FF). The available positions in the incomplete layer

are kept in a list in lexicographic order along axes z, y and

x , in this order. To try to pack the next residual box, we se-

lect the first position in this list and we try to place the box

in it. If no constraint is violated, the box is placed with its

current orientation in the selected position. Otherwise, we

try again to place the box in the selected position, but with

its other possible orientation (i.e., after horizontally rotating

the box by 90 °). If the box has not yet been packed, we se-

lect the next position in the list of available positions, if any,

and the procedure is repeated (i.e., we try again to pack the

box). Note that this heuristic is a variation of the BackLeft-

Low and LeftBackLow heuristics of Tarantilis, Zachariadis and

Kiranoudis (2009) adapted to the present problem. With this

heuristic, we try to pack each residual box first in the lower

positions along the height of the incomplete layer, aiming at

minimizing the final height of this layer; 

(b) Best Fit (BF). The available positions in the incomplete layer

are kept in a list in any order. We try to pack the next resid-

ual box in every available position with its two possible ori-

entations. If any, we select the feasible combination (posi-

tion and orientation) that maximizes the contact area be-

tween the faces of the current box with the faces of the

boxes already packed (i.e., the current box is packed with

this orientation). To favor the packing of boxes in the lower

positions along the height of the incomplete layer, aiming

at minimizing the final height of this layer, the contact area

between the top and bottom faces of the boxes is not ac-

counted for selecting the best feasible combination. In the

case of a tie between the feasible combinations, we select

the combination with the lowest position along the height
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of the incomplete layer. Note that this heuristic is a vari-

ation of the MaxTouchingAreaW, MaxTouchingAreaNoWallsW,

MaxTouchingAreaL and MaxTouchingAreaNoWallsL heuristics

of Tarantilis et al. (2009) adapted to the present problem.

With this heuristic, we try to favor a more compact packing

of the residual boxes, and, at the same time, the placement

of boxes in the lower positions along the height of the in-

complete layer. 

4.2.3. Avoiding the generation of layers that do not lead to a feasible 

solution 

A layer may need to be on the top of some compartment (i.e.,

with no other layer above it) by at least one of the following rea-

sons: 

(a) Stability. The layer does not have an enough number of boxes

and/or it is incomplete; 

(b) Fragility . The load bearing strength of the boxes on the layer

is not enough. 

If in any moment of the route the number of layers that need

to be on the top of some compartment is larger than the number

of compartments, then a feasible solution cannot be obtained. To

avoid this situation, during the generation of the incomplete lay-

ers and after the generation of the complete layers, we perform a

procedure that aims at identifying and excluding the excess of lay-

ers that need to be on the top of some compartment. Fig. 11 (see

Appendix B ) describes the procedure excL ( k ) that is used for identi-

fying and excluding the excess of layers that need to be on the top

of some compartment at a stop k . Note that these removed boxes,

as they are no longer packed in any layer, they are therefore resid-

ual boxes (by definition). We then try to pack these boxes in the

incomplete layers left. As an incomplete layer can only be on the

top of some compartment, this procedure prioritizes the exclusion

of layers with lower weight. 

4.3. Basic step 3 

4.3.1. Packing all layers 

After generating all layers (complete and incomplete), we

try to pack them in the compartments by solving Model 1 (see

Appendix C ), a Mixed Integer Linear Programming Problem (MILPP)

that considers all problem constraints and objectives. Note that

the geometric arrangement of the complete and incomplete layers

inside a compartment can be seen as a one-dimensional packing

problem (with additional loading constraints). The objective func-

tion of Model 1 aims at minimizing the penalties for the handling

of boxes along the route and the penalties for the load balancing

deviations. A feasible solution for Model 1 consists in packing all

layers while respecting the geometrical constraints, cargo stability

constraints, and load bearing constraints. If a feasible solution for

Model 1 is not obtained, we perform an iterative procedure in

search for a feasible solution. At each iteration of this iterative

procedure: 

(a) We exclude a complete layer which can support less weight

above it along the route (i.e., which has the smallest load

bearing strength indicator), since it is possibly the hardest

to combine with the remaining layers; 

(b) We try to pack the boxes of this excluded layer in the in-

complete layers (generating again the incomplete layers); 

(c) With the new set of layers, we try to solve Model 1. 

4.4. Basic step 4 

4.4.1. Local search 

If a feasible solution for the problem is obtained, we try to im-

prove this solution with a local search procedure, which consists

in seeking for an alternative packing for the residual boxes. First,
ll residual boxes are removed from the solution obtained, and we

ry to pack them back again on the top of the compartments using

n iterative procedure. Fig. 12 (see Appendix B ) describes the pro-

edure bLocal () that is used to perform a local search on the first

olution obtained by the heuristic. At each iteration of this proce-

ure the following steps are performed: 

(a) We try to assign the residual boxes to compartments by

solving Model 2 (see Appendix C ), another MILPP. The ob-

jective function of Model 2 aims at minimizing the penalties

for the handling of residual boxes along the route and the

penalties for the load balancing deviations. Note that this

objective function assumes that the residual boxes are all

packed in the compartments to which they are assigned. A

feasible solution to Model 2 consists in packing all residual

boxes in the compartments while respecting the geometri-

cal constraints, vertical support constraints and a limitation

on the total weight of the residual boxes assigned to a

compartment. 

(b) We try to sequentially pack the residual boxes in their re-

spective compartments with a procedure similar to the one

used for generating the initial incomplete layers (see Fig. 9 ).

Fig. 13 (see Appendix B ) describes the procedure gInc2 () that

is used to try to generate again the incomplete layers, ac-

cording to the assignment of residual boxes to compart-

ments that was defined by the procedure bLocal (). Again,

the residual boxes are sorted in a list in inverse order of

the vehicle stops. As a first tiebreaker, we use the height of

the boxes in decreasing order, and, if necessary, as a second

tiebreaker, we use the load bearing strength of the boxes in

decreasing order. Following the defined order for the resid-

ual boxes, they are sequentially packed in their respective

compartments, provided that they respect the packing con-

straints. Two attempts for packing the residual boxes are

performed: in the first the position and orientation of the

residual boxes in the incomplete layers are defined using the

FF heuristic, while in the second the BF heuristic is used.

Each attempt generates a partial solution (i.e., a subset of

packed residual boxes) and we choose the solution whose

sum of the volumes of the packed residual boxes is larger.

Fig. 14 (see Appendix B ) describes the procedure pRes2 () that

is used to try to define the orientation and position of the

residual boxes inside the incomplete layers, according to the

assignment of residual boxes to compartments that was de-

fined by the procedure bLocal (); 

(c) The residual boxes assigned to a compartment that can be

packed are fixed in it. To ensure the convergence of the pro-

cedure, if a box of a given type cannot be packed in a com-

partment, then the residual boxes of the same type are for-

bidden from being assigned to this compartment in the next

iterations of the procedure. 

. Computational tests 

In the following the generation of the test instances, the com-

utational results and their analysis are presented. 

.1. Information of containers and boxes 

The characteristics of containers and boxes used in the com-

utational experiments are presented in the following. This infor-

ation was obtained from data provided by the beverage company

hat motivated this study. The relative volume of boxes is the equiv-

lent volume metric employed by the beverage company. For a box

f type i ∈ M , the relative volume is not necessarily related to the

eal volume occupied by a box of this type (i.e., l i w i h i ), but it is

iven by v rel 
i 

= 100 /max Q i , where maxQ i is the maximum number
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Table 1 

Information of the containers used in the computational experiments. 

Container Compartments ( c ∈ C ) 
V rel 1 2 3 4 5 6 7 8 9 10 

2 compartments 200 St St − − − − − − − −
4 compartments 400 St St St St − − − − − −
6 compartments 600 St St St St St St − − − −
8 compartments 760 St St St St Lo Lo St St − −
10 compartments 960 St St St St St St Lo Lo St St 

Table 2 

Dimensions of the compartment types used in the computational ex- 

periments. 

Compartment Type Length (cm) Width (cm) Height (cm) 

Standard ( St ) 100 120 178 

Lowered ( Lo ) 100 120 148 

o  

b  

m  

p  

s  

b

 

n  

s  

c

i  

c  

p  

c  

b  

e  

t

 

m

 

h  

o  

c  

t

5

 

2  

s

5

 

t  

p  

r  

v  

i  

a  

t  

d

 

t  

t  

d  

s  

a  

1  

Table 3 

Data of the box types used in the computational experiments. 

i ∈ M l i (cm) w i (cm) h i (cm) P i (kg) σ i (kg/cm 

2 ) v rel 
i 

1 13 20 12 2.31 0.10 0.21 

2 14 20 13 2.19 0.09 0.21 

3 20 27 13 4.61 0.10 0.38 

4 5 16 13 0.90 0.07 0.11 

5 11 16 14 1.60 0.09 0.18 

6 4 16 15 0.68 0.09 0.07 

7 13 13 16 2.06 0.10 0.19 

8 19 28 17 5.70 0.03 1.09 

9 28 42 18 23.06 0.06 2.78 

10 13 16 19 2.00 0.09 0.17 

11 17 24 20 5.00 0.06 0.69 

12 13 17 20 2.97 0.08 0.29 

13 16 24 21 6.70 0.07 0.67 

14 19 26 22 6.60 0.08 0.60 

15 20 27 23 6.53 0.07 0.65 

16 12 20 23 3.20 0.07 0.37 

17 13 19 24 3.40 0.09 0.30 

18 12 18 24 3.20 0.07 0.33 

19 14 21 24 3.95 0.07 0.42 

20 14 20 25 3.40 0.07 0.30 

21 15 26 26 6.98 0.13 0.71 

22 31 42 27 15.01 0.07 1.43 

23 33 48 29 15.01 0.05 2.38 

24 28 32 30 15.00 0.08 1.11 

25 35 51 32 29.52 0.08 2.38 

26 18 28 33 10.00 0.06 1.14 

27 17 27 33 9.90 0.06 1.14 

28 16 27 34 5.10 0.04 1.04 

29 21 31 35 12.90 0.08 1.00 

30 31 41 36 22.87 0.07 2.00 

31 24 35 37 16.00 0.06 1.67 

32 20 31 38 14.45 0.07 1.25 

Min. 4 13 12 0.68 0.03 0.07 

Max. 35 51 38 29.52 0.13 2.78 

Avg. 18.09 26.53 23.94 8.21 0.08 0.85 

Std. Dev. 7.60 9.76 7.91 7.28 0.02 0.72 
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f boxes of type i that the company places above a pallet with this

ox type only for storage purposes. Each container also has a given

aximum capacity defined for the total relative volume of boxes

laced in it, which is given by V 

rel , and we use this information in

ome of the instance classes to limit the volume of boxes that can

e packed in the container (described ahead). 

In total, we considered 5 container types. The capacities and the

umber of compartments available in each one of them are pre-

ented in Table 1 . In this table, St and Lo , respectively, refer to the

ompartment types standard and lowered , while the symbol “− ”

ndicates that the respective compartment is not present. Note that

ontainers with eight and ten compartments have lowered com-

artments due to the axles and wheels of the truck. Note also that

ontainers with two and four compartments are not used by the

everage company, although they are also found in practice. In the

xperiments, however, they are useful to evaluate the sensitivity of

he proposed hybrid approach. 

Table 2 presents the dimensions of the two types of compart-

ents considered. 

Note that it is assumed that the walls of the compartments

ave negligible thicknesses (see assumption A12 at the beginning

f Section 4 ). Hence, L = 2 L comp and W = (| C |/2) W 

comp . In total, we

onsidered 32 box types. The diverse characteristics of each one of

hem are presented in Table 3 . 

.2. Data for the instances generation 

To evaluate the performance of the proposed hybrid approach,

1 instance classes were considered, and for each class 10 in-

tances were generated as described in the following. 

.2.1. Instances of Class 1 

They correspond to instances 1R,…,10R. Instance 1R is a prac-

ical example obtained with data provided by the beverage com-

any, while instances 2R,…,10R are generated from instance 1R by

andomly choosing the order in which the customers (stops) are

isited by the vehicle. With the instances of this class, the objective

s to evaluate the performance of the proposed hybrid approach

gainst a realistic case, and also to evaluate possible impacts on

he solution of the problem with changes in the boxes delivery or-

er. 

As it was admitted, the first stop of the vehicle is destination 1,

he second stop of the vehicle is destination 2, and so on. To keep

his definition, instances 2R,…,10R are generated by exchanging the

emands of the stops of instance 1R (see procedure gInst1 () de-

cribed in Fig. 15 of Appendix B ). Note that this exchange is equiv-

lent to changing the sequence in which the customers of instance

R are visited by the vehicle. Instance 1R has a container with 8
ompartments and 18 stops, and the demands of each customer

stop) are presented in Table 4 . 

.2.2. Instances of Classes 2 to 21 

They correspond to instances 1A ,…,200A . These instances are

andomly generated by varying the container types, the number

f stops, the box types and their demands (see procedure gInst2 ()

escribed in Fig. 16 of Appendix B ). With the instances of these

lasses, the objective is to evaluate the performance of the pro-

osed hybrid approach against cases not covered by the instances

f Class 1. 

In order to define an instance with this procedure, initially we

ry to generate the demand of some box type for each different

top of the vehicle. All generated demand is accepted (i.e., added

o the instance) if its relative volume plus the relative volume of

he demands already accepted are not larger than a given toler-

nce. Otherwise, we accept the largest possible parcel of the gen-

rated demand and the instance generation is finished. After trying

o define the initial demand for each stop, the demand generation

rocess is repeated for the same instance while it is possible. 
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Table 4 

Data of the demands of the box types for each customer of instance 1R. 

k ∈ K i ∈ M 

1 3 7 12 13 16 19 22 25 28 29 30 31 

1 1 1 0 0 0 0 1 0 2 1 1 0 0 

2 0 0 0 0 0 0 5 0 0 0 24 0 0 

3 0 0 0 2 0 0 0 0 0 0 3 0 0 

4 10 0 0 0 0 5 0 0 0 0 3 0 0 

5 0 4 0 0 1 0 0 1 2 2 1 0 0 

6 0 0 0 0 1 0 0 0 0 0 0 0 0 

7 6 0 0 0 0 0 0 0 2 0 9 0 0 

8 0 62 6 109 0 0 0 0 3 0 24 49 0 

9 0 12 0 0 0 0 0 2 2 0 0 0 0 

10 8 23 22 3 0 0 2 0 6 4 30 0 0 

11 0 0 0 0 7 0 0 0 0 0 7 0 0 

12 5 0 0 0 0 0 2 0 0 0 18 0 0 

13 2 0 0 0 0 0 0 18 0 0 0 0 0 

14 4 33 0 4 0 0 5 0 3 5 19 17 10 

15 10 0 0 0 0 0 2 0 0 0 38 0 0 

16 20 13 0 26 0 0 6 0 10 0 22 0 0 

17 0 2 0 0 0 0 0 1 4 0 1 0 0 

18 2 0 0 0 0 4 2 2 9 1 4 0 0 

Table 5 

Data used for the generation of problem instances of Classes 2 

to 21. 

Class Instances k mx v mx Container 

2 1A,…,10A 3 0.8 2 compartments 

3 11A,…,20A 3 0.9 2 compartments 

4 21A,…,30A 4 0.8 2 compartments 

5 31A,…,40A 4 0.9 2 compartments 

6 41A,…,50A 6 0.8 4 compartments 

7 51A,…,60A 6 0.9 4 compartments 

8 61A,…,70A 8 0.8 4 compartments 

9 71A,…,80A 8 0.9 4 compartments 

10 81A,…,90A 9 0.8 6 compartments 

11 91A,…,100A 9 0.9 6 compartments 

12 101A,…,110A 12 0.8 6 compartments 

13 111A,…,120A 12 0.9 6 compartments 

14 121A,…,130A 12 0.8 8 compartments 

15 131A,…,140A 12 0.9 8 compartments 

16 141A,…,150A 16 0.8 8 compartments 

17 151A,…,160A 16 0.9 8 compartments 

18 161A,…,170A 15 0.8 10 compartments 

19 171A,…,180A 15 0.9 10 compartments 

20 181A,…,190A 20 0.8 10 compartments 

21 191A,…,200A 20 0.9 10 compartments 
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Table 5 presents specific data used for the generation of the

problem instances of Classes 2 to 21, where k mx is the maximum

number of stops that can be assigned, and v mx is a parameter that

constraints the total relative volume of boxes, v mx ∈ R , 0 ≤ v mx ≤ 1 .

The maximum number of box types that can be assigned is given

by n mx = 2| C |, and the largest demand of a box of type i ∈ M that

can be generated at once is given by b mx 
i 

= � 0 . 1 V rel / v rel 
i 

� . 
5.3. Results generation 

Models 1 and 2 were solved using software IBM ILOG CPLEX

(version 12.5.1) with the default parameters. The computational

time spent to solve any instance of Model 1 was limited to 1200 s

(20 min). The implementation codes were written in C#, compiled

in a 64-bit platform, and performed on a Intel Core i7-2860QM

at 3.6 GHz, with 8GB DDR3 SDRAM. The random numbers gener-

ator used the method System.Random from the library of classes

Microsoft .NET Framework 4. Consider the following notation used

in the remaining of this section: 
Z : total value of the penalties for the handling of boxes; 

B : total value of the penalties for the load balancing de-

viations. Note that, according to expression (15) (see

Appendix C ), cZ has priority over cB (see also assump-

tion A2 at the beginning of Section 4 ); 

Gap : absolute gap. This value is given by the absolute differ-

ence between the smallest upper bound and the largest

lower bound found; 

Gap : relative gap. This value is given by the division of aGap

by the smallest upper bound found; 

 

P 1 , t P 2 : respectively the computational times, in seconds, spent

with the solution of Models 1 and 2; 

 

est ,t def : respectively the computational times, in seconds, spent

for generating the incomplete layers before and after the

solution of Model 1 (i.e., respectively running the proce-

dures described in Figs. 9 and 13 ); 

 

�: total computational time, in seconds; 

Pos : total number of available positions in the container for

placing boxes and/or layers. In Model 1 this number is

given by 
∑ 

c∈ C 
( μc + 1 ) ; 

Box : total number of required boxes; 

P 1, nP 2: respectively the number of times that we tried to solve

Models 1 and 2 for a same instance; 

Ex : number of layers identified as exceeding, and, therefore,

excluded from the solution (see the procedure described

in Fig. 11 ); 

 res : percentage of residual boxes with relation to the total

number of required boxes; 

 BF est : percentage of times that the BF heuristic is chosen for

packing the residual boxes in incomplete layers before

solving Model 1. In the remaining times, the FF heuristic

is chosen for this purpose (see the procedure described

in Fig. 9 ); 

 BF def : percentage of times that the BF heuristic is chosen for

packing the residual boxes in incomplete layers after

solving Model 2. In the remaining times, the FF heuristic

is chosen for this purpose (see the procedure described

in Fig. 13 ); 

 P 1 L : percentage of instances in which the solution obtained

after solving Model 1 could be improved with the lo-

cal search procedure (see the procedure described in

Fig. 12 ). 
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We tried to solve all instances of the 21 classes (C1,…,C21) with

he proposed hybrid approach and Table 6 presents a summary of

he obtained results. Due to limitations of space, we only present

he average values for each class, which were rounded to two dec-

mal digits. The values for cZ, cB and | N 

′ ′ | refer to the best solu-

ion obtained for each instance, while the values for rGap refer to

odel 1. Note that the values in the last line of this table corre-

pond to an average of average values. The table also presents the

etailed results for instance 1R. 

.4. Comments on the results 

At least one solution was obtained by the proposed approach

or all 210 instances evaluated in this section. In 205 out of these

10 instances, a solution could be obtained by the local search

rocedure described in Fig. 12 (local search). In 117 out of these

05 instances, the solution obtained with this procedure was bet-

er than the initial solution (obtained with Model 1). In 107 out of

hese 117 instances, the solution obtained was better only in what

oncerns the load balancing deviations (it was the same in what

oncerns the handling of boxes), while in the remaining 10 in-

tances it was also better in what concerns the handling of boxes.

he lower frequency of instances in which the penalties with the

andling of boxes are decreased by the local search procedure can

e explained by the fact that the boxes that are relocated, in most

ases, are in complete layers, which have their positions already

efined in the initial solution. Note that this fact is related to the

euristic strategy of defining the residual boxes as the ones from

he first stops and also of initially trying to pack them in a smaller

umber of layers. 

It can also be observed that the performance of the local search

rocedure tends to be better with instances with more compart-

ents (see % P 1 L ). With a larger number of compartments there

re also more possibilities to assign boxes to compartments with

odel 2 (used by the local search procedure), which increases the

hances of a feasible solution to be found with this search. Note

lso that, in these cases, the average number of times in which the

esidual boxes are assigned with Model 2 also increase (see nP 2).

ne possible reason for this is that Model 2 preferably seeks to as-

ign residual boxes to compartments closer to the position of the

eometric center of the container (in order to reduce the penalties

ith the load balancing deviations), and, therefore, in fewer com-

artments. As in these cases there is a larger number of residual

oxes (in absolute terms), there is also a larger number of resid-

al boxes assigned to compartments, which reduces the chances of

hese boxes to be packed at once, thus requiring new assignments

i.e., new solutions of Model 2). 

In the experiments with instances of Class 1, as expected, we

oted the influence of the delivery sequence in the objective func-

ion of the problem. The results indicate that either the handling

f boxes or the load balancing can play a relevant role in the def-

nition of routes of lower costs, in the case of a possible inte-

rated approach with vehicle routing problems (see, e.g., Junqueira

 Morabito, 2015; Hokama, Miyazawa & Xavier, 2016 ). 

On average, for instances of Classes 2 to 21 with a same num-

er of compartments, the penalties with the handling of boxes and

he load balancing deviations always increase with the increase of

he demands (i.e., with the increase of the value of v mx used in the

xperiments). These penalties also usually increase with the num-

er of vehicle stops. In particular, we observed a large increase of

hese penalties for Classes 17, 19 and 21. The solutions for some

f the instances of these classes exceeded 10 0 0 units of relocated

oxes along the route. 

The iterative procedure applied in the cases in which a feasible

olution could not be obtained (see lines 3 to 15 in Fig. 7 ) needed

o be run in only one of the evaluated instances (one instance of
lass 4, causing an increase in the value of nP 1). However, for this

ingle instance it proved to be effective, being able to find a feasi-

le solution. 

The procedure used for identifying and excluding the excess

f layers that need to be on the top of some compartment (see

ig. 11 ) needed to be run in only two of the evaluated instances

one instance of Class 6 and one instance of Class 8, see nEx ). In

otal, three complete layers were excluded and their boxes were

laced on incomplete layers with this procedure. In these two eval-

ated cases, the procedure proved to be effective, i.e., it allowed

he generation of a feasible set of complete and incomplete layers

hat could later be all packed inside the container. 

With relation to the FF and BF heuristics used for packing the

esidual boxes in the incomplete layers, we note that both were

ffective for generating the solutions. On average, for the incom-

lete layers generated with the procedure described in Fig. 9 , both

euristics were chosen in an approximate number of times (see

 BF est ), while for the case in which the incomplete layers were

enerated with the procedure described in Fig. 13 , the BF heuris-

ic was always chosen in more than 62% of times (see % BF def ). We

ote that the BF heuristic is chosen as the tiebreaker criterion in

oth procedures. For the case in which the incomplete layers were

enerated with the procedure described in Fig. 9 , the BF heuris-

ic is chosen for breaking a tie in 10% of times, while for the case

n which the incomplete layers were generated with the procedure

escribed in Fig. 13 , the BF heuristic is chosen for breaking a tie in

pproximately 70% of times. 

In the times in which the FF heuristic was chosen (i.e., in the

imes in which the BF heuristic was not chosen), it was due to

he fact that it was able to generate a more compact packing (in

he case of the procedure described in Fig. 9 ) or that it was able

o pack a larger volume of boxes in a given iteration (in the case

f the procedure described in Fig. 13 ), when compared to the BF

euristic. Note that the FF heuristic packs each residual box always

n lower positions on a layer. As the boxes (of a same stop) being

acked are sorted by their heights, the packing surface generated

bove them tends to be relatively flat, which facilitates the packing

f the next boxes. On the other hand, the BF heuristic, when trying

o place each box in a position that maximizes the contact area

etween the lateral faces of this box with the lateral faces of other

oxes, although it favors a compact packing, it can generate a more

ragmented packing surface than the FF heuristic, which in some

ases makes it difficult the packing of the next boxes. 

In what concerns the computational times, t P 1 increase a lot

ith the increase in the number of compartments. This growth is

ot evident among the classes with more than four compartments

Class 1, and Classes 10 to 21), because in almost all instances of

hese classes the time limit defined for the solution of Model 1 was

eached. Note that, for the instances with more compartments, the

umber of complete layers and the number of possible positions in

he compartments are larger. These values, together with the num-

er of vehicle stops, influenced the size of Model 1. In the case of

 

P 2 , they usually increase with the increase in the number of com-

artments and residual boxes, but they are always low (on average,

ess than 1 s for almost all cases). t est and t def also increase with

he increase in the number of residual boxes and they are always

ow (on average, they are always less than 2 and 4 s, respectively).

In 76 out of the 210 evaluated instances, the relative gaps ( rGap )

f the solutions obtained with Model 1 are equal to 0, i.e., these

olutions were proven optimal by CPLEX. Note that these solutions

re optimal for the set of complete and incomplete layers made

vailable, which does not mean that these solutions cannot be im-

roved with the procedure described in Fig. 12 , once it modifies

he incomplete layers already defined in previous steps of the pro-

osed approach. In fact, it could be observed in some instances of

lasses with up to four compartments (Classes 2 to 9). Except for
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Table 6 

Summary of the results obtained with the proposed hybrid approach for instance 1R and for all instances of Classes 1 to 21. 

cZ cB t P 1 t P 2 t est t def t � | N ′ | | N ′ ′ | % res nEx nP 1 nP 2 % BF est % BF def nPos nBox P �1 rGap % P 1 L 

1R 120.18 10,525.57 1200.89 0.62 1.39 3.68 1219.60 32.00 3.00 21.15 0.00 1.00 3.00 – – 72.00 780.00 7358.98 1.00 –

C1 436.49 17,056.10 1200.68 0.64 1.32 3.07 1217.74 32.00 3.60 21.15 0.00 1.00 3.14 70.00 81.82 72.00 780.00 7358.98 1.00 40.00 

C2 34.03 131.03 0.25 0.02 0.21 0.34 0.89 7.40 1.50 17.52 0.00 1.00 1.00 40.00 100.00 13.20 408.60 1535.96 0.00 50.00 

C3 58.28 144.45 2.81 0.02 0.47 0.67 4.09 10.60 1.40 17.71 0.00 1.00 1.00 50.00 100.00 16.40 764.40 1805.34 0.00 40.00 

C4 66.62 203.43 0.32 0.02 0.24 0.36 1.05 7.30 1.30 17.67 0.00 1.10 1.00 30.00 90.00 13.20 408.60 1535.96 0.00 30.00 

C5 81.72 228.97 1.41 0.02 0.42 0.66 2.67 10.60 1.20 17.71 0.00 1.00 1.00 40.00 90.00 16.40 764.40 1805.34 0.00 20.00 

C6 16.90 775.88 58.98 0.13 0.66 1.34 61.67 14.70 2.30 20.02 0.20 1.00 1.70 20.00 70.59 30.00 643.40 3028.79 0.00 20.00 

C7 22.24 750.35 703.99 0.11 0.73 1.39 707.67 18.30 1.90 14.89 0.00 1.00 1.40 40.00 64.29 33.20 812.40 3584.54 0.10 50.00 

C8 13.07 1025.70 48.28 0.17 0.73 1.34 51.43 14.90 2.60 19.02 0.10 1.00 1.50 50.00 86.67 30.00 643.40 3028.79 0.00 70.00 

C9 26.87 1419.59 709.01 0.41 0.60 1.08 794.52 18.30 2.00 14.89 0.00 1.00 1.30 30.00 76.92 33.20 812.40 3584.54 0.37 60.00 

C10 0.00 389.32 1200.66 0.21 0.74 1.44 1207.49 24.80 2.50 14.41 0.00 1.00 1.60 20.00 62.50 52.20 1039.00 4629.48 0.88 40.00 

C11 88.01 1711.33 1099.30 0.21 0.76 1.50 1105.77 24.80 3.30 15.95 0.00 1.00 1.70 70.00 64.71 49.80 1031.30 5122.72 0.89 50.00 

C12 2.47 1272.09 1201.39 0.29 0.66 1.46 1209.19 24.80 2.60 14.41 0.00 1.00 1.80 20.00 77.78 52.20 1039.00 4629.48 0.94 40.00 

C13 22.39 2351.16 1201.51 0.29 0.72 1.47 1209.49 24.80 3.10 15.95 0.00 1.00 1.70 30.00 76.47 49.80 1031.30 5122.72 0.93 70.00 

C14 0.00 582.08 1200.88 0.57 0.69 1.59 1210.96 30.10 4.60 13.32 0.00 1.00 1.60 40.00 81.25 64.20 1180.50 5914.39 0.99 70.00 

C15 56.32 3564.29 1200.67 0.59 0.94 2.36 1213.97 35.90 3.70 12.70 0.00 1.00 2.40 50.00 87.50 73.00 1179.00 6808.12 0.99 60.00 

C16 3.80 1652.58 1201.26 0.58 0.71 1.53 1213.78 30.10 3.70 13.32 0.00 1.00 1.50 50.00 86.67 64.20 1180.50 5914.39 0.97 80.00 

C17 389.54 6489.75 1200.93 0.54 0.94 2.28 1218.34 35.90 3.70 12.70 0.00 1.00 2.50 40.00 64.00 73.00 1179.00 6808.12 1.00 70.00 

C18 45.99 4514.83 1200.93 0.73 0.84 2.19 1222.15 42.30 4.60 9.95 0.00 1.00 2.00 30.00 80.00 91.20 2023.10 7814.03 1.00 90.00 

C19 734.18 9767.12 1200.53 0.94 1.15 2.67 1228.36 44.40 4.40 12.20 0.00 1.00 2.22 40.00 90.00 93.80 2078.40 8691.06 1.00 70.00 

C20 54.18 6886.02 1201.25 1.01 0.86 2.15 1230.47 42.40 5.00 9.92 0.00 1.00 1.90 20.00 78.95 91.10 2023.10 7814.03 0.99 90.00 

C21 995.66 13,834.27 1200.99 0.89 1.22 3.07 1235.75 44.40 3.90 12.20 0.00 1.00 2.22 60.00 85.00 93.80 2078.40 8691.06 1.00 60.00 

Avg. 149.94 3559.54 815.10 0.40 0.74 1.62 826.07 25.66 3.00 15.12 0.01 1.00 1.72 40.00 80.72 52.67 1157.15 5010.85 0.62 55.71 
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ne single instance with six compartments, these 76 instances are

ll of classes with up to four compartments. For the remaining in-

tances, the relative gaps are almost always equal to 1, or close to

his value, which means that nothing (or very little) can be stated

bout the quality of these solutions, in relative terms (see the def-

nition of rGap ). However, in 149 out of the 210 instances, we note

hat the absolute gaps ( aGap ) of the solutions obtained are smaller

han ω 

z [ ω 

zq + Min i ∈ M 

( ω 

zp P i )], i.e., the smallest unit of penalty for

he handling of boxes. It means that these solutions are “optimal

or the handling of boxes” (no unit of penalty for the handling of

oxes can be further diminished from them). 

The solutions obtained with the proposed approach were not

ompared to the solutions employed in practice, since they were

ot made available by the beverage company. During visits to this

ompany, its logistics manager reaffirmed the difficulty in finding

easible vehicle loading plans that, besides packing all boxes of the

oute in the vehicle compartments, also meet all remaining con-

traints of the problem. The logistics manager found the solutions

roduced by the proposed approach potentially good to be used in

ractice. 

. Conclusion 

In this paper, we presented a hybrid approach for the solution

f a three-dimensional packing problem that arises in real situa-

ions, as it is the case of the beverage distribution using trucks

ith multi-compartment containers. The approach is based on the

eneration of horizontal layers and in the solution of smaller pack-

ng and assignment problems. The used formulations contemplate

everal practical packing considerations and they allowed that a

arge variety of instances based on real data could be solved. Sev-

ral constraints must be met along the vehicle route, which can

ake it harder the solution of instances of larger sizes (i.e., with

arger number of layers, stops, compartments and possible posi-

ions inside the compartments). 

As it is usual in real situations, it was assumed that the vehicle

oute is known in advance (provided by a vehicle routing system)

nd that all required boxes must be packed inside the vehicle. In

ractice, if a feasible solution is not obtained, it is necessary to

hange the predefined route plan and/or to consider an additional

ew delivery route and/or to use a solution that violates some of

he constraints involved. Computational tests were performed with

his approach and a large variety of instances based on real data

rom a soft drink company that motivated this study, and the re-

ults show that the proposed solution approach was able to find

easible solutions for all considered test instances, which is hard

o achieve in practice with the manual procedures that the com-

any has available, due to difficulties with the arrangement of all

oxes inside the compartments along the vehicle route, besides re-

pecting other problem constraints. We also note that the decision

akers from the beverage company found that the proposed solu-

ion approach has good potential for improving the manual proce-

ures that the company has available, which usually entail a lot of

andling of boxes inside the container along the truck route. 

We note that this is the first study focusing on a vehicle packing

roblem with multi-compartment containers in the context of bev-

rage distribution, and we believe that the proposed models and

euristic can be useful to motivate future researches that address

nd extend this problem. In particular, the proposed solution ap-

roach has good potential for being embedded into existing expert

nd intelligent systems for supporting the decision making process.

An interesting line of research would be to develop an effective

alidation of the proposed hybrid approach using it in the com-

any on a daily basis to better evaluate the advantages and disad-

antages of the loading plans generated by the approach in com-
arison with the ones used in the company. Some extension pro-

osals also include: 

(a) Enhance the proposed solution approach, e.g., trying to ini-

tially solve Model 1 with a fast heuristic. We note that for

some instances, particularly those with a larger number of

layers and compartments, the solutions obtained relatively

high penalties with the handling of boxes and the load bal-

ancing deviations. Additionally, for many of these instances

it was neither possible to prove the optimality of the solu-

tions obtained with Model 1, nor to obtain smaller relative

gaps (within the defined 20 min time limit). 

(b) Allow the possibility of relocating boxes, at each stop, to a

different position inside the vehicle, for example, to other

compartments. This relocation could be advantageous to

strategically reduce the handling of boxes and to obtain fea-

sible solutions to instances whose solutions would be previ-

ously infeasible. We remind that, in this study, it was con-

sidered the relocation of a box in only one special case, that

is when all boxes on the layer below it are unloaded (see

assumption A3 at the beginning of Section 4 ); 

(c) Evaluate other objectives that can be related to reducing the

boxes unloading time along the route, as, for example, try-

ing to keep boxes from a same stop in fewer compartments

and/or in closer compartments; 

(d) Combine the three-dimensional container loading problem

of this study with vehicle routing problems, so that the ve-

hicle routing and cargo loading decisions are considered si-

multaneously. 
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ppendix A. Definitions and Notation 

To indicate the position of items and objects, we use as refer-

nce the origin of the axes x, y and z that are adjacent to the faces

, 2 and 3 of the cuboid shown in Fig. 5 . This point is referred

o as front-bottom-left corner (FBLC). Note that the container, the

ompartments, the layers and the boxes have all their own FBLC. 

The notation employed in the two next sections follow a

ame format, name 
speci f ication 

ind ex 1 , ... ,ind ex N 
, in which the name may come

ith some emphasis (e.g., an upper dash). The specification is

sed to differentiate notation with a same name. In the case

f lists, to indicate a specific element, we employ the format

ist name 
speci f ication 

ind ex 1 , ... ,ind ex N 
[ position in the list ] . Consider the following

otation: 
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Face Nomenclature
1 Bottom face
2 Front face
3 Left face
4 Back face
5 Right face
6 Top face

Fig. 5. Reference cuboid for items and objects. 
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asic Sets: 

K : set of vehicle stops; 

C : set of container compartments; 

N 

′ : set of complete layers; 

N 

′ ′ : set of incomplete layers; 

N : set of all layers, i.e., N = N 

′ ∪ N 

′ ′ ; 
M : set of required box types; 

M 

′ : set of residual boxes. 

ndexes: 

k, k ′ : a stop, k, k ′ ∈ K ; 

c : a compartment, c ∈ C ; 

j, j ′ : a layer, j, j ′ ∈ N ; 

i : a box type, i ∈ M ; 

f : a box of any type and stop, f ∈ M 

′ ; 
s, s ′ : positions in a compartment for placing a layer j ∈ N ; 

p, p ′ : possible positions along axis x ; 

q, q ′ : possible positions along axis y ; 

r, r ′ : possible positions along axis z . 

arameters: 

M : sufficiently large positive number; 

L, W, H : length, width and height of the container, respectively

along axes x, y and z ; 

L comp : length of any compartment along axis x ; 

W 

comp : width of any compartment along axis y ; 

H 

comp 
c : height of a compartment c ∈ C along axis z ; 

p c ,q c : position of a compartment c ∈ C inside the container,

respectively along axes x and y ; 

l i , w i , h i : length, width and height of a box of type i ∈ M , respec-

tively along axes x, y and z ; 

h̄ j : height of a layer j ∈ N ; 

φ( f ): type of a box f ∈ M 

′ ; 
k max 

j 
: last stop in which boxes on layer j ∈ N are unloaded; 

b i : number of residual boxes of type i ∈ M ; 

b ik : number of boxes of type i ∈ M required by stop k ∈ K ; 

P i : weight of a box of type i ∈ M ; 

P �
k 

: total weight of the cargo when only boxes from stops k ′ 
≥ k ∈ K are inside the vehicle; 

P jk : weight of a layer j ∈ N when only boxes from stops k ′ ≥
k ∈ K are inside the vehicle; 

P max 
ck 

: maximum weight that a stack of complete layers, if any,

placed in a compartment c ∈ C , can support above it

when only boxes from stops k ′ ≥ k ∈ K are inside the

vehicle. If there are no complete layers in compartment

c , then P max 
ck 

= M ; 

Q jk : number of boxes on a layer j ∈ N when only boxes from

stops k ′ ≥ k ∈ K are inside the vehicle; 

Q 

< 
f c 

: number of stops previous to the stop of the residual box

f ∈ M 

′ in which the boxes on complete layers are un-

loaded from compartment c ∈ C . Therefore, it defines the

number of times that box f will need to be relocated if

it is packed in compartment c ; 
¯ j : maximum supported pressure by any point on the top

face of a box on the complete layer j ∈ N 

′ ; 
¯
 j : minimum number of boxes that the complete layer j

∈ N 

′ needs to have so that it can provide vertical sta-

bility for the boxes placed above it. In all the compu-

tational experiments (see Section 5.3 ) the value ψ̄ j =
4 , j ∈ N 

′ was used, that is, for any stop k ∈ K , four boxes

on a complete layer j ∈ N 

′ (e.g., one at each corner)

are enough to provide vertical stability to boxes placed

above this layer; 

jk : sum of all areas of the top faces of boxes placed on the

complete layer j ∈ N 

′ when only boxes from stops k ′ ≥ k

∈ K are inside the vehicle; 

 j : indicator of the load bearing strength of the complete

layer j ∈ N 

′ along the route. The higher this value, the

more resistant to stacking a layer j is. It is assumed

that this indicator for a given stop k ∈ K , when only

boxes from stops k ′ ≥ k ∈ K are inside the vehicle, is

given by: σ̄ j π jk /P �
k 

, if Q jk ≥ ψ̄ j , and it is equal to 0

otherwise. From this relation, note that if layer j has

1 , . . . , ψ̄ j − 1 boxes, the referred indicator is equal to

zero, once no box can be placed above it (for stabil-

ity reasons). Note also that this indicator is higher the

lower the total weight inside the vehicle for stop k

( P �
k 

) and, with this, we seek to reflect the load bear-

ing strength of layer j against the other layers inside the

container, i.e., its relative load bearing strength. As one

aims an indicator for the whole route, we propose that:

R j = 

∑ 

{ k ∈ K| Q jk ≥ψ̄ j } 
( ̄σ j π jk /P �

k 
) /k max 

j 
, j ∈ N 

′ , i.e., R j is given

by the average of the load bearing strength indicators

of the complete layer j for all stops from which it has

boxes; 

sBF : it is equal to 1 if the Best Fit (BF) heuristic for pack-

ing residual boxes is activated, and it is equal to 0 if

the First Fit (FF) heuristic for packing residual boxes is

activated; 

: parameter related to the desired vertical stability, α ∈
R , 0 ≤ α ≤ 1 . In one extreme, α = 1 indicates that the

bottom face of any box must be 100% supported by the

top faces of other boxes or by the object floor. In the

other extreme, α = 0 indicates that there is no concern

about the vertical stability of the boxes. In all the com-

putational experiments (see Section 5.3 ) the value α = 1

was used, that is, the minimum vertical support must

be 100% (i.e., full support). Note that, as α = 1, a residual

box cannot be placed above other residual boxes from

previous stops (see procedure vStab ( f, p, q, r , j ) ahead)

and, therefore, residual boxes can always be unloaded

without relocating any other box; 

, γ : parameters related to the desired horizontal stability,

β ∈ R , 0 ≤ β ≤ 1 ; γ ∈ R , 0 ≤ γ ≤ 1 . In one extreme,

β = 1 ( γ = 1) indicates that the left (front) face of any
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box must be 100% supported by the right (back) faces

of other boxes or by the object left (front) wall. In the

other extreme, β = 0 ( γ = 0) indicates that there is no

concern about the horizontal stability of the boxes. In all

the computational experiments (see Section 5.3 ) the val-

ues β = γ = 0 were used, that is, no minimum horizontal

support is required; 

 jk : it is equal to 1 if the complete layer j ∈ N 

′ has boxes

from stop k ∈ K , and it is equal to 0 otherwise; 

 

> 
jk 

: it is equal to 1 if the complete layer j ∈ N 

′ has boxes

from stops k ′ > k ∈ K , and it is equal to 0 otherwise; 

 

≥
f k 

: it is equal to 1 if the residual box f ∈ M 

′ is from a stop

k ′ ≥ k ∈ K , and it is equal to 0 otherwise; 

jj ′ : it is equal to 1 if the complete layer j ∈ N 

′ has 0 or at

least ψ̄ j boxes, when only boxes from stops k ′ ≥ k ∈ K

are inside the vehicle, for k = 1 , . . . , k max 
j ′ . In this case, we

say that layer j vertically stabilizes layer j ′ . Otherwise, it

is equal to 0; 
′ 
f c 

: it is equal to 1 if there are no complete layers in com-

partment c ∈ C , or if any complete layer j ∈ N 

′ packed in

compartment c has 0 or at least ψ̄ j boxes, when only

boxes from stops k ′ ≥ k ∈ K are inside the vehicle, for

k = 1, …, k ∗, in which k ∗ is the stop of the residual box

f ∈ M 

′ . In these cases, we say that compartment c pro-

vides vertical stability to box f . Otherwise, it is equal to

0; 

 

vx , g vy : ideal position of the center of gravity of the cargo

inside the vehicle, respectively along axes x and y .

This center of gravity is defined using the Cartesian

coordinate system for the container, whose position

(0,0,0) is located at the FBLC of the container. In all

the computational experiments (see Section 5.3 ) the

values g vx = L /2 and g vy = W /2 were used in Models 1 and

2 (see Appendix C ), that is, the ideal position for the

center of gravity of the vehicle is defined as the position

of the geometric center of its container; 
x 
jk 

, τ y 

jk 
: position of the center of gravity of layer j ∈ N , when

only boxes from stops k ′ ≥ k ∈ K are inside the vehi-

cle, respectively along axes x and y . This center of gravity

is defined using the Cartesian coordinate system for the

own layer, whose position (0,0,0) is located at the FBLC

of the layer. These parameters are known in advance, be-

fore solving Model 1; 

 

x , ε y : tolerance values for the load balancing deviations, re-

spectively along axes x and y , such that εx ≥ 0, εy ≥
0. In all the computational experiments (see Section 5.3 )

the values ε x = P �
1 

/ | C| · 0 . 02 · L and ε y = P �
1 

/ | C| · 0 . 02 ·
W were used in Models 1 and 2, that is, the tolerance

for the load balancing deviations, respectively along axes

x and y , is given by the average weight of the boxes in

a compartment, when all required boxes are in the con-

tainer, multiplied by 2% of the container sizes along axes

x and y ; 

 

dev , ω 

z : relative weights, respectively, for the load balancing de-

viations and for the handling of boxes; 

 

zp , ω 

zq : relative weights, respectively, for the weight and for

the number of relocated boxes. In all the computational

experiments (see Section 5.3 ) the values ω 

zp = 0.2 and

ω 

zq = 0.8 were used in Models 1 and 2, that is, the

penalty for the handling of boxes is given by 20% of

the weight and 80% of the number of these boxes. Ad-

ditionally, the weights for the handling of residual boxes

along the route and for the load balancing deviations in

the objective function are equal, that is, ω 

dev = ω 

z = 1 in

Models 1 and 2; 
c : upper bound on the number of complete layers in a

compartment c ∈ C ; 
′ 
c : maximum number of complete layers whose sum of

heights is not larger than the height of a compartment c

∈ C ; 
′′ 
c : maximum number of complete layers that can be

stacked above the complete layer with largest load bear-

ing strength plus one unit; 

: parameter that if ζ = 1, μc is an upper bound on the

number of complete layers in a compartment c ∈ C ; if

ζ < 1, then it is not guaranteed that μc is still an up-

per bound and, therefore, it can make infeasible a so-

lution to the problem. Note that the size of the prob-

lem grows with the value of ζ . In all the computa-

tional experiments (see Section 5.3 ) the value ζ = 0.7

was used. This value was obtained after computational

experiments with several instances of Model 1. For the

computational experiments, ζ = 0.7 was chosen for being

the smallest value that did not imply significant changes

in the solution quality, when compared to ζ = 1; 

 

′ 
jsc 

: values of variables y jsc , j ∈ N; c ∈ C; s ∈ S c , obtained after

solving Model 1. 

erived Subsets: 

 c : set of vertical positions in which a complete layer can be

placed in a compartment c ∈ C . In a compartment, the

lower-valued positions have lower height in this com-

partment (i.e., a layer placed in position s is below an-

other layer placed in position s ′ > s in the same com-

partment). This set is defined as: 

S c = 

{
s | s ∈ N , 0 < s ≤ μc 

}
, c ∈ C 

 jc : set of vertical positions in which any layer j ∈ N can

be placed in a compartment c ∈ C . As the incomplete

layers cannot be placed below the complete layers, but

only in the last position of a compartment, this set is

defined as: 

S jc = 

{
s | s ∈ S c , 

s = μc + 1 , 

i f j ∈ N 

′ 
i f j ∈ N 

′′ 

}
, j ∈ N; c ∈ C 

ists: 

ist comp : list that has only the container compartments sorted by

their heights in increasing order; 

ist 
pos 
j 

: list of the available positions for packing residual boxes

in the incomplete layer j ∈ N 

′ ′ . The positions in this list

are kept in lexicographic order along axes z, y and x , in

this order. Initially, there is no available position in this

list; 

ist res : list of all residual boxes f ∈ M 

′ sorted in inverse order

of the vehicle stops. In the case of a tie, the boxes from

the same stop are sorted by their heights in decreasing

order. If the tie persists, the boxes from the same stop

and with the same height are sorted by their load bear-

ing strengths in decreasing order; 

ist 
top 

k 
: list of all generated layers that, when only boxes from

stops k ′ ≥ k ∈ K are inside the vehicle, need to be on the

top of some compartment by at least one of the following

reasons: (a) stability: layer j has 1 , ..., ψ̄ j − 1 boxes and/or

it is incomplete; (b) fragility: layer j cannot be placed be-

low any other layer due to the load bearing strength of

its boxes. This list is sorted by the weights of the layers

in increasing order. 



484 R. Ranck Júnior, H.H. Yanasse and R. Morabito et al. / Expert Systems With Applications 137 (2019) 471–492 

Point Coordinate
1 ( , 0, + ℎ )
2 ( , , + ℎ )
3 (0, , + ℎ )
4 ( + ,0, )
5 ( + , , )
6 ( + , , 0)
7 ( , + , 0)
8 ( , + , )
9 (0, + , )

Fig. 6. Possible positions available for placing a residual box. 
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uxiliary Procedures: 

vOver ( f, p, q, r, j ): procedure that verifies if, when placing the

residual box f ∈ M 

′ in position ( p, q, r ) of the

incomplete layer j ∈ N 

′ ′ , box f does not over-

lap another box already packed and it is com-

pletely inside the incomplete layer j ∈ N 

′ ′ ; 
vStack ( f, p, q, r , j ): procedure that verifies if, when placing the

residual box f ∈ M 

′ in position ( p, q, r ) of the

incomplete layer j ∈ N 

′ ′ , the maximum sup-

ported pressure by any point ( p ′ , q ′ , r ′ ) on the

top faces of boxes already packed in the in-

complete layer j ∈ N 

′ ′ is not exceeded by the

pressure applied by boxes placed above point

( p ′ , q ′ , r ′ ); 
vStab ( f, p, q, r , j ): being i = φ( f ) and k ∈ K the stop of the resid-

ual box f ∈ M 

′ , this procedure verifies if, when

placing box f in position ( p, q, r ) of the incom-

plete layer j ∈ N 

′ ′ : the area of the bottom face

of box f in direct contact with the top faces of

A

Fig. 7. Heuristic ma
boxes from stops k ′ ≥ k , or with the floor of

the incomplete layer j ∈ N 

′ ′ , is not smaller than

α( l i w i ); the area of the left face of box f in di-

rect contact with the right faces of boxes from

stops k ′ ≥ k , or with the left wall of the incom-

plete layer j ∈ N 

′ ′ , is not smaller than β( h i w i );

the area of the front face of box f in direct con-

tact with the back faces of boxes from stops k ′ 
≥ k , or with the front wall of the incomplete

layer j ∈ N 

′ ′ , is not smaller than γ ( l i h i ). 

The domains of the coordinates p, q and r in an incomplete

ayer j ∈ N 

′ ′ (respectively with relation to axes x, y and z ), can-

idates for some residual box to be placed in with its FBLC, are

iven by what are known as extreme points ( Crainic, Perboli &

adei, 2008 ). Once a residual box is placed on the layer it defines

p to nine positions available for packing the next residual boxes.

ig. 6 shows these positions. 

ppendix B. Related Pseudocodes 
in procedure. 
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Fig. 8. Procedure gComp () for generating the complete layers. 

Fig. 9. Procedure gInc () for generating the incomplete layers. 
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Fig. 10. Procedure pRes () for packing the residual boxes. 

Fig. 11. Procedure excL ( k ) for identifying and excluding the excess of layers that need to be on the top of some compartment at a stop k . 
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Fig. 12. Procedure bLocal () for seeking an alternative packing for the residual boxes. 

Fig. 13. Procedure gInc2 () for generating the incomplete layers. 
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Fig. 14. Procedure pRes2 () for packing the residual boxes. 

Fig. 15. Procedure gInst 1() for the generation of the problem instances 2R,…,10R of Class 1. 
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Fig. 16. Procedure gInst 2() for the generation of the problem instances of Classes 2 to 21. 
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ppendix C. Mathematical Formulations 

The geometric arrangement of the complete and incomplete

ayers inside a compartment can be seen as a one-dimensional

acking problem (with additional loading constraints). For this rea-

on, note that it is not necessary to know the absolute position of

ach layer in the compartment, but only the order in which they

re placed in this compartment, i.e., their relative positions , which

re then considered in the formulations that follow. Note that the

elative positions for placing a layer in a compartment start in 1,

nd not in 0, as in the case of the absolute positions. 

Model 1 (i.e., expressions (1) –(16) ) in the following aims at

acking all boxes in the vehicle compartments considering all con-

traints and the problem objective function. However, Model 1 rep-

esents a simplified version of the problem, once the boxes must

e all packed in the compartments by means of complete and in-

omplete layers, which were already generated in previous steps

f the heuristic. Consider the following decision variables to this

ormulation: 

ariables : 

 

x 
k 
, g 

y 

k 
: free (auxiliary) decision variables that define the real po-

sition of the center of gravity of the cargo, when only

boxes from stops k ′ ≥ k ∈ K are inside the vehicle, respec-

tively along axes x and y . This center of gravity is defined

using the Cartesian coordinate system for the container,

whose position (0,0,0) is located at the FBLC of the con-

tainer; 

 jsc : binary decision variable that is equal to 1 if layer j ∈ N is

placed in position s ∈ S c of compartment c ∈ C , and it is

equal to 0 otherwise; 

¯ jk : binary decision variable that is equal to 1 if layer j ∈ N

has boxes from stops k ′ > k ∈ K and it is placed above an-

other layer that has boxes from stop k . In this case, these

boxes from stops k ′ will need to be relocated at stop k .

Otherwise, it is equal to 0; 
x 
k 
, θ y 

k 
: non-negative decision variables that define the vehicle

load balancing deviations (i.e., unbalancing), when only

boxes from stops k ′ ≥ k ∈ K are inside the vehicle, re-

spectively along axes x and y . 
odel 1 

Formulation: 

in ω 

z 
∑ 

k ∈ K \ { | K | } 

∑ 

j∈ N 

(
ω 

zq Q jk +1 + ω 

zp P jk +1 

)
z̄ jk + ω 

de v 
∑ 

k ∈ K 

(
θ x 

k + θ y 

k 

)
(1) 

 

c∈ C 

∑ 

s ∈ S jc 
y jsc = 1 j ∈ N (2) 

 

j∈ N 

∑ 

s ∈ S jc 
h j y jsc ≤ H c c ∈ C (3) 

∑ 

j∈ N ′ 
y jsc ≤ 1 c ∈ C; s ∈ S c (4) 

∑ 

j∈ N ′′ 
y jsc ≤ 1 c ∈ C; s = μc + 1 (5)

 

x 
k = 

( ∑ 

j∈ N 

∑ 

c∈ C 

∑ 

s ∈ S jc 
P jk 

(
p c + τ x 

jk 

)
y jsc 

) /
P �k k ∈ K (6)

 

y 

k 
= 

( ∑ 

j∈ N 

∑ 

c∈ C 

∑ 

s ∈ S jc 
P jk 

(
q c + τ y 

jk 

)
y jsc 

) /
P �k k ∈ K (7)

x 
k 

≥ P �
k 

(
g x 

k 
− g v x 

)
− ε x 

≥ P �
k 

(
g v x − g x 

k 

)
− ε x 

k ∈ K (8) 

y 

k 

≥ P �
k 

(
g y 

k 
− g v y 

)
− ε y 

≥ P �
k 

(
g v y − g y 

k 

)
− ε y 

k ∈ K (9) 

∑ 

 

s ′ ∈ S c | 
s ′ > s 

} 

y j ′ s ′ c ≤
∑ 

j∈ N ′ 
ρ j j ′ y jsc j ′ ∈ N 

′ ; c ∈ C; s ∈ S c \ { μc } (10)
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s  

a  

i  

C  

c  

p  

d  

d  

p  

w

 

l  

w  

f  

d  

p  

u  

P  

b

ω

 

 

s  

o

μ  

 

u  

A  

p  

a  

C

V

λ
 

M

M  
y j ′ s ′ c ≤
∑ 

j∈ N ′ 
ρ j j ′ y jsc + 

(
1 − ∑ 

j∈ N ′ 
y jsc 

)
j ′ ∈ N 

′′ ; c ∈ C; s ∈ S c ;
s ′ = μc + 1 

(11)

M 

(
1 − y j ′ sc 

)
+ σ̄ j ′ y j ′ sc ≥

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∑ 

j∈ N 

∑ 

{ 

s ′ ∈ S jc | 
s ′ > s 

} 

P jk y js ′ c 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

/
π j ′ k 

k ∈ K; j ′ ∈ N 

′ ; c ∈ C; s ∈ S c ;π j ′ k 
 = 0 (12)

∑ { 

s ′ ∈ S j ′ c | 
s ′ > s 

} 

e > 
j ′ k y j ′ s ′ c − z̄ j ′ k ≤ 1 − ∑ 

j∈ N ′ 
e jk y jsc 

k ∈ K \ { | K | } ; j ′ ∈ N; c ∈ C; s ∈ S c 

(13)

θ x 
k , θ

y 

k 
≥ 0 k ∈ K 

y jsc ∈ { 0 , 1 } j ∈ N; c ∈ C; s ∈ S c 

z jk ∈ { 0 , 1 } j ∈ N; k ∈ K \ { | K | } 
(14)

The objective function (1) aims at minimizing the penalties for

the handling of boxes along the route (first parcel) and the penal-

ties for the load balancing deviations (second parcel). Note that

in this expression Q jk + 1 and P jk + 1 respectively correspond to the

number and weight of boxes on layer j ∈ N that will be relocated

at stop k ∈ K if z̄ jk = 1 . 

Constraints (2) ensure that all layers j ∈ N are packed in the

compartments. Note that these constraints also ensure that a layer

j ∈ N is only placed in positions s ∈ S c , c ∈ C , assigned to it. Con-

straints (3) ensure that the height of a layer stack placed in a com-

partment c ∈ C is not larger than the height of this compartment.

Constraints (4) –(5) ensure that no more than one layer j ∈ N occu-

pies any position in a compartment c ∈ C . Note that this condition

is sufficient to avoid that the layers overlap each other inside a

compartment. 

Constraints (6) –(7) define the auxiliary variables g x 
k 

and g 
y 

k 
, re-

spectively. Note in these constraints that ( p c + τ x 
jk 
) and ( q c + τ y 

jk 
)

correspond to the position of the center of gravity of a layer j ∈ N ,

respectively along axes x and y . Constraints (8) –(9) define the load

balancing deviations along axes x and y . These load balancing devi-

ations, when only boxes from stops k ′ ≥ k ∈ K are inside the vehi-

cle, are given by the absolute distance between the real position of

the center of gravity of the cargo and the ideal position of the cen-

ter of gravity of the vehicle, weighted by the cargo weight inside

the vehicle. These deviations are accounted for if they are larger

than the tolerances εx and εy , respectively, along axes x and y . We

note that these constraints are only valid together with the objec-

tive function (1) , that penalizes these deviations. Note also that, to

hold the linearity of this formulation, an absolute value function is

defined, without loss of generality, with two linear inequalities. 

Constraints (10) ensure that a complete layer j ′ ∈ N 

′ can only

be placed in a position s ′ ∈ S c | s 
′ > s of compartment c ∈ C (i.e.,

y j ′ s ′ c = 1), if in any position s ∈ S c below it in this compartment

there is another complete layer j ∈ N 

′ that can vertically stabi-

lize it (i.e., ρ jj ′ y jsc = 1). Note that these constraints never prevent a

complete layer j ′ to be placed in position s ′ = 1 of compartment c ,

because in this case layer j ′ is vertically stabilized by the compart-

ment floor. Note also that these constraints do not allow a com-

plete layer j ′ to be placed above a position that is not occupied

by any other layer (i.e., generating a “hole” in the compartment).

Constraints (11) ensure that an incomplete layer j ′ ∈ N 

′ ′ can only

be placed in the position s ′ = μc + 1 of compartment c ∈ C , if in
ach position s ∈ S c below it in this compartment: there is a com-

lete layer j ∈ N 

′ that can vertically stabilize it (i.e., ρ jj ′ y jsc = 1); or

here is no layer (i.e., 
∑ 

j∈ N ′ 
y jsc = 0 ). Note that it is allowed to place

n incomplete layer j ′ ∈ N 

′ ′ above a position that is not occupied

y any other layer, once it was defined that the incomplete layers

an only be placed in the last position ( μc + 1) of some compart-

ent c ∈ C (so they are never below another layer). 

Constraints (12) ensure that, when only boxes from stops k ′ ≥ k

 K are inside the vehicle, the pressure applied over any point on

he top face of a box on the complete layer j ′ ∈ N 

′ placed in posi-

ion s ∈ S c of compartment c ∈ C is not larger than the maximum

ressure than can be supported by that point (i.e., σ̄ j ′ y j ′ sc ). This

ressure is given by the weight of layers j ∈ N placed in positions

 

′ ∈ S c above the complete layer j ′ in the same compartment c ∈
 , divided by the sum of the areas of the top faces of boxes placed

n the complete layer j ′ . Note that if the complete layer j ′ is not in

he evaluated position (i.e., y j ′ sc = 0), these constraints are redun-

ant. We also note that here were considered assumptions A7 and

8 at the beginning of Section 4 . 

Constraints (13) ensure that if a layer j ′ ∈ N that has boxes from

tops k ′ > k ∈ K is placed in a position s ′ ∈ S j ′ c (i.e., e > 
j ′ k y j ′ s ′ c = 1 )

bove a complete layer j ∈ N 

′ that has boxes from stop k placed

n a position s ∈ S c (i.e., e jk y jsc = 1) of the same compartment c ∈
 , then the boxes on layer j ′ from stops k ′ will need to be relo-

ated at stop k (i.e., z̄ j ′ k = 1 ). Note that this handling of boxes is

enalized in the objective function (1) . Constraints (14) define the

omain of the decision variables. Note that variables z̄ jk are not

efined to k = | K |, because in the last vehicle stop the boxes from

revious stops will have already been unloaded, and therefore it

ill no longer be necessary to relocate boxes. 

It is considered that minimizing the handling of boxes has

arger priority with relation to minimizing the load balancing, as it

as stated in assumption A2 at the beginning of Section 4 . There-

ore, the penalized load balancing deviations, ω 

de v ∑ 

k ∈ K 
( θ x 

k 
+ θ y 

k 
) , are

efined in such a way that they are smaller than the smallest

enalized relocated unit, ω 

z [ ω 

zq + Min i ∈ M 

( ω 

zp P i )]. Note that the

pper bounds on variables θ x 
k 

and θ y 

k 
are respectively given by

 

�
k 

L − ε x and P �
k 

W − ε y . Therefore, the relative weight for the load

alancing deviations is defined as: 

 

de v = 

ω 

z [ ω 

zq + Mi n i ∈ M 

( ω 

zp P i ) ] 

/[
1 + 

∑ 

k ∈ K 

(
P �

k 
L − ε x + P �

k 
W − ε y 

)]
(15)

The bound μc is given by the following relation that uses the

mallest of two known upper bounds ( μ′ 
c and μ

′′ 
c ) on the number

f complete layers in a compartment c ∈ C : 

c = | N 

′ | / | C | + ζ
[
Min 

(
μ′ 

c , μ
′′ 
c 

)
− | N 

′ | / | C | ] c ∈ C (16)

Model 2 (i.e., expressions (8) –(9) , (17) –(25) ) in the following is

sed by the local search procedure of the heuristic (see Fig. 12 in

ppendix B ) to assign the residual boxes to the container com-

artments, where the complete layers are already packed, aiming

t considering all constraints and the problem objective function.

onsider the following decision variables to this formulation: 

ariables : 

fc : binary decision variable that is equal to 1 if box f ∈ M 

′ 
is assigned to compartment c ∈ C , and it is equal to 0

otherwise. 

odel 2 

Formulation: 

in ω 

z 
∑ 

f∈ M 

′ 

∑ 

c∈ C 
Q 

< 
f c 

(
ω 

zq + ω 

zp P ϕ ( f ) 
)
λ f c + ω 

de v 
∑ 

k ∈ K 

(
θ x 

k + θ y 

k 

)
(17)
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A  

 

A  

 

A  

 

A  

A  

 

B  

B  

B  

B  

B  

C  

C  

 

C  

C  

D  

D  

 

E  

E  

F  

G  

 

G  

G  

G  

 

H  

H  

 

H  

H  

H  

 

J  

 

J  

 

J  

 

J  

 

L  

 

x 
k 

≥ P �
k 

(
g x 

k 
− g v x 

)
− ε x 

≥ P �
k 

(
g v x − g x 

k 

)
− ε x 

k ∈ K (8) 

y 

k 

≥ P �
k 

(
g y 

k 
− g v y 

)
− ε y 

≥ P �
k 

(
g v y − g y 

k 

)
− ε y 

k ∈ K (9) 

 

c∈ C 
λ f c = 1 f ∈ M 

′ (18)

∑ 

f∈ M ′ 
l ϕ ( f ) w ϕ ( f ) h ϕ ( f ) λ f c ≤ L comp W 

comp 
(

H 

comp 
c −

∑ 

j∈ N ′ 
∑ 

s ∈ S c 
h̄ j y 

′ 
jsc 

)
c ∈ C (19) 

 ϕ ( f ) λ f c ≤
(

H 

comp 
c −

∑ 

j∈ N ′ 
∑ 

s ∈ S c 
h̄ j y 

′ 
jsc 

)
f ∈ M 

′ ; c ∈ C (20)

fc ≤ ρ ′ 
fc f ∈ M 

′ ; c ∈ C (21) 

∑ 

f∈ M 

′ 
P ϕ ( f ) e 

≥
fk 
λfc ≤ P max 

ck c ∈ C; k ∈ K (22) 

 

x 
k = 

⎛ 

⎝ 

∑ 

f∈ M 

′ 

∑ 

c∈ C 
e ≥

f k 
P ϕ ( f ) ( p c + L comp / 2 ) λ f c + ∑ 

j∈ N ′ 
∑ 

c∈ C 

∑ 

s ∈ S c 
P jk 

(
p c + τ x 

jk 

)
y ′ 

jsc 

⎞ 

⎠ 

/
P �k k ∈ K (23)

 

y 

k 
= 

⎛ 

⎝ 

∑ 

f∈ M 

′ 

∑ 

c∈ C 
e ≥

f k 
P ϕ ( f ) ( q c + W 

comp / 2 ) λ f c + ∑ 

j∈ N ′ 
∑ 

c∈ C 

∑ 

s ∈ S c 
P jk 

(
q c + τ y 

jk 

)
y ′ 

jsc 

⎞ 

⎠ 

/
P �k k ∈ K (24)

θ x 
k , θ

y 

k 
≥ 0 k ∈ K 

λfc ∈ { 0 , 1 } f ∈ M 

′ ; c ∈ C (25) 

The objective function (17) aims at minimizing the penalties for

he handling of residual boxes along the route (first parcel) and the

enalties for the load balancing deviations (second parcel). Note

hat this objective function assumes that the residual boxes are

ll packed in the compartments to which they are assigned. Con-

traints (18) ensure that all residual boxes are assigned to compart-

ents c ∈ C . Constraints (19) ensure that the total volume of resid-

al boxes f ∈ M 

′ assigned to compartment c ∈ C is not larger than

he available volume in this compartment, given by the total vol-

me of the compartment minus the volume occupied by complete

ayers that may already be packed in it. Constraints (20) ensure

hat a residual box f ∈ M 

′ is not assigned to a compartment c ∈
 with available height smaller than the box height. This available

eight is given by the height of compartment c minus the total

eight of the stack of complete layers that may already be packed

n it. Constraints (21) ensure that a residual box f ∈ M 

′ is only as-

igned to a compartment c ∈ C that provides vertical support to

t (i.e., ρ′ 
f c 

= 1 ). Constraints (22) limit to P max 
ck 

, for any stop k ∈ K ,

he total weight of the residual boxes assigned to a compartment

 ∈ C . Constraints (8) –(9) and (23) –(24) have the same role as con-

traints (6) –(9) previously defined. The center of gravity of the set

f residual boxes assigned to a compartment is estimated in the

eometric center of this compartment. Constraints (25) define the

omain of the decision variables. 
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