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In this paper, we address a real problem of packing boxes into a multi-compartment container, in which
the boxes must be delivered to customers in a predefined route. This problem arises, for example, in the
distribution of beverages (packed in “boxes”) by trucks whose container has multiple compartments. The
objective is to find a feasible packing plan that minimizes the handling of boxes inside the container
along the whole truck route. The following practical constraints must be met: orientation of the boxes,
cargo stability, load bearing strength of the boxes and load balancing. To the best of our knowledge,
this is the first study focusing on a vehicle packing problem with multi-compartment containers in the
context of beverage distribution. To solve this problem, we present a hybrid approach which consists of
a heuristic method based on the generation of horizontal layers and on the solution of mixed integer
linear programming models. Computational tests were performed with this approach and a large variety
of instances based on real data from a soft drink company. The results show that the approach is able to
find feasible solutions for all instances considered under all constraints, contrary to what was observed
in practice with the manual procedures available in the company. In practice, if a feasible solution is
not obtained, it is necessary to change the predefined route plan and/or to consider an additional new
delivery route and/or to use a solution that violates some of the constraints involved. In this sense, the
proposed solution approach has good potential for being embedded into existing expert and intelligent
systems for supporting the decision making process.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

planning and lot sizing (e.g., Norden & Velde, 2005), and to the
container loading (e.g., Chen, Lee & Shen, 1995; Terno, Scheithauer,

Freight transportation is an important activity in several sec-
tors, especially for companies that need to collect different types of
products from their suppliers and/or that need to deliver different
types of products to their customers (e.g., milk run). Together with
the activities of warehousing and handling, freight transportation
permeates the costliest sectors in logistics, and therefore it must be
performed efficiently, with the products being collected/delivered
on time, within the desired conditions and with reduced costs. The
costs of freight transportation can be related to the delivery routes
(e.g., Gendreau, lori, Laporte & Martello, 2006), to the production
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Sommerweiss & Riehme, 2000).

In this paper, we investigate a real Container Loading Problem
arising in the beverage industry. This problem was motivated by a
case study carried out in a soft drink company in Brazil, but similar
loading problems are also found in other beverage companies. This
company is a large producer that maintains a high degree of in-
ternational brand recognition, and it bottles very well-known soft
drinks in different countries. In the present problem, the company
needs to deliver its products daily to a set of customers, and it has
available a given type of vehicle/truck whose container has multi-
ple compartments (some of them of different sizes). This type of
container is useful, e.g., when one aims at increasing the cargo
stability or separation. The truck must then perform a delivery
route known in advance (determined by the vehicle routing system
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of the company), and all the boxes required by the customers in
the route must be packed inside the container. When packing the
cargo, several practical constraints must be met, such as the orien-
tation of the boxes, the cargo stability, the load bearing strength of
the boxes and the load balancing. The main objective is to find a
feasible packing plan with all the boxes required by the customers
in the predefined route, and, if this solution is found, then to min-
imize the handling of boxes inside the container along the truck
route.

It is important to note that the aforementioned practical con-
straints must be met along the whole truck route, and not only at
its departure from the depot (see, e.g., Junqueira, Oliveira, Carrav-
illa & Morabito, 2013). Since this problem involves “loss of mass”
along the delivery route, it must be ensured that the boxes re-
quired by a customer, once dropped-off, neither cause cargo insta-
bility to the boxes required by the remaining customers nor cause
the center of gravity of the remaining cargo to lay on an unsafe
position.

This problem of loading boxes in a multi-compartment vehicle
differs from most Container Loading Problems treated in the litera-
ture. It can also be seen as a problem in which multiple containers
or pallets are available for packing the boxes (see, e.g., Chan, Bhag-
wat, Kumar, Tiwari & Lam, 2006; Chen et al., 1995; Eley, 2003;
Alonso, Alvarez-Valdes, lori & Parrefio, 2019). However, it consid-
ers several objects (compartments) in a same vehicle respecting,
for example, the load balancing and/or multiple destinations of the
boxes. It is also related to the Master Bay Plan Problem, which con-
sists in determining stowage plans for containers in a ship (see,
e.g., Pacino & Jensen, 2012; Sciomachen & Tanfani, 2003, 2007;
Aragjo, Chaves, Salles Neto & Azevedo, 2016). In that problem, the
containers, the ship and its bays can be viewed as the items, the
object and its compartments of the present problem, respectively.
However, these two problems also have major differences, as dis-
cussed in Section 2.

According to Waischer, Haussner and Schumann (2007), this
problem can be seen as an extended three-dimensional packing
problem, once it extends the concept of packing/cutting items in
objects, for example, due to the minimization of the handling of
items inside objects along a route. However, the associated prob-
lem of how to pack boxes (beverage packaging) inside objects
(compartments of the vehicle) does not fit perfectly the typology
proposed by the authors, once it does not address the maximiza-
tion of the outputs (selection of items to be packed in the objects)
or the minimization of the inputs (selection of objects to pack the
items), but all the items and objects must be used for the packing,
while satisfying the related constraints.

In the day to day of the beverage company, it is hard to ob-
tain in practice feasible solutions for this problem with the manual
procedures that the company has available, which usually entail
a lot of handling of boxes inside the container due to difficulties
with the arrangement of all boxes inside the compartments along
the vehicle route, besides respecting other problem constraints. If a
feasible solution is not obtained, it is necessary to change the pre-
defined route plan and/or to consider an additional new delivery
route and/or to use a solution that violates some of the constraints
involved. In this sense, the development of solution approaches for
being embedded into existing expert and intelligent systems may
support the decision making process.

We present in this paper a hybrid solution approach that con-
sists of a heuristic method based on the generation of horizontal
layers and on the solution of mixed integer linear programming
models. The used formulations contemplate several practical pack-
ing considerations, as the aforementioned ones. The proposed so-
lution approach is novel in combining exact and heuristic methods
to tackle a real container loading variant for the first time, while at
the same time inspired by the way that the beverage company that

motivated this study packs the boxes inside the container, and we
believe that it can be directly used, or straightforwardly modified
to be used, in other related distribution settings.

To the best of our knowledge, this is the first study focusing
on a vehicle packing problem with multi-compartment containers
in the context of beverage distribution, and it contributes to the
field by describing in detail what the practical problem is so that
future researchers may use this problem instead of a stylized one
to motivate their research. The paper also provides practical guide-
lines in the development and management of expert and intelli-
gent systems for loading (unloading) products into (from) a multi-
compartment container along the route of its truck. These guide-
lines are based on the design, development and testing of compu-
tational procedures based on operations research techniques and
inspired on a real-life case study of the problem.

This work is organized as follows. In Section 2, the related lit-
erature is briefly reviewed. In Section 3, the problem addressed
in this paper is properly defined. In Section 4, the hybrid solu-
tion approach to the problem is presented. In Section 5, the results
of some computational tests with the proposed solution approach
and a large variety of instances based on real data provided by a
beverage company are analyzed and discussed. Finally, in Section 6,
the concluding remarks and some perspectives for future research
are presented.

2. Related literature

Packing smaller items into larger objects is a frequently en-
countered problem when dealing with cargo transportation, and it
is normally a complex task when efficiency is longed-for. The ar-
rangement of items inside an object (i.e., a packing pattern) must
meet at least two basic constraints (the so-called geometrical con-
straints): the items are packed completely inside the object and
the items do not overlap each other. The Container Loading Prob-
lem is a three-dimensional packing problem in which the boxes
(items) need to be placed inside containers (objects) respecting
one or more criteria. According to Bortfeldt and Wdscher (2013),
with few exceptions, most studies consider rectangular items that
can only be placed orthogonally into also rectangular containers.

Realistic Container Loading Problems normally take into con-
sideration other practical aspects, such as the orientation of the
boxes, the weight distribution within the container, the multi-
ple destinations, the cargo stability and the load bearing strength
of the boxes, among others (Bischoff & Ratcliff, 1995). Examples
of studies that tackle Container Loading Problems with some of
these practical considerations include, e.g., Bischoff (2006), Ceschia
and Schaerf (2013) and Ramos, Oliveira, Gongalves and Lopes
(2016), Davies and Bischoff (1999), Junqueira, Morabito and Ya-
mashita (2012a), Junqueira, Morabito and Yamashita (2012b), Silva,
Soma and Maculan (2003). A compilation and discussion of stud-
ies that addressed several practical constraints can be found in
Bortfeldt and Wascher (2013).

Container Loading Problems generalize the well-known Knap-
sack Problem, and therefore they are also NP-Hard. In general, only
small practical instances of these problems can be solved with
exact algorithms (e.g., Hifi, 2004; Lai, Xue & Xu, 1998; Martello,
Pisinger & Vigo, 2000). Due to their inherent complexity, most
solution methods for Container Loading Problems are heuristics,
which can be classified into constructive heuristics (e.g., Aratjo
& Armentano, 2007; Bischoff, Janetz & Ratcliff, 1995; George &
Robinson, 1980), metaheuristics (e.g., Gehring & Bortfeldt, 1997;
Gongalves & Resende, 2012; Moura & Oliveira, 2005; Parrefio,
Alvarez-Valdes, Oliveira & Tamarit, 2010; Ramos, Silva & Oliveira,
2018) and tree-search heuristics (e.g., Araya & Riff, 2014; Eley,
2002; Fanslau & Bortfeldt, 2010; Pisinger, 2002). There is also a
class of approximate algorithms that are able to ensure a given
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worst-case performance, for example, in what concerns the objec-
tive function of the problem (e.g., Hifi, 2002; Miyazawa & Wak-
abayashi, 1999). A recent comparative review of algorithms for
Container Loading Problems can be found in Zhao, Bennell, Bektas
and Dowsland (2016).

According to Pisinger (2002), these heuristics can also be clas-
sified into four fundamental types related to how the boxes are
arranged inside the container:

(a) Wall-building. The boxes are arranged in horizontal (e.g.,
Bischoff et al., 1995; Terno et al., 2000) or vertical (e.g.,
Davies & Bischoff, 1999; George & Robinson, 1980) layers;

(b) Stack-building. Boxes are arranged in vertical columns (e.g.,
Gehring & Bortfeldt, 1997; Haessler & Talbot, 1990);

() Guillotine Cutting. Boxes are arranged in such a way that they
could be entirely separated by means of a series of guillotine
cuts (e.g., Morabito & Arenales, 1994);

(d) Cuboid Arrangement. Boxes of the same type and with the
same orientation are arranged in blocks (e.g., Bortfeldt,
Gehring & Mack, 2003; Eley, 2002).

The arrangement of boxes in layers is frequently employed
when solving Container Loading Problems. This type of arrange-
ment makes it easy to load the boxes, once it enables a less com-
plex packing pattern. In the case where the layers are horizontal,
they also favor the cargo stability (Bischoff & Ratcliff, 1995). When
packing horizontal layers, in some cases it is possible to separate
them with thin sheets (dividers) of wood or plastic in order to in-
crease the cargo stability and/or separate the boxes.

In the Combinatorial Optimization literature, studies that ad-
dress multi-compartment containers/vehicles are frequently re-
lated to Capacitated Vehicle Routing Problems, in which routes
need to be defined respecting the capacities of the vehicle com-
partments (see, e.g., Henke, Speranza & Wadscher, 2015; Lahyani,
Coelho, Khemakhem, Laporte & Semet, 2015). To the best of our
knowledge, studies addressing these problems, although they con-
sider capacitated compartments (e.g., with relation to the weight
or volume), they do not contemplate geometrical constraints taking
into account more than one spatial dimension, and therefore they
are not considered Container Loading Problems (see, e.g., Avella,
Boccia & Sforza, 2004; Derigs et al., 2011).

Another related problem, the Master Bay Plan Problem, which
consists in determining stowage plans for containers in a ship,
can also be seen as a Container Loading Problem (see, e.g., Pacino
& Jensen, 2012; Sciomachen & Tanfani, 2003, 2007; Aratjo et al.,
2016). In this problem, the containers, the ship and its bays can be
understood as items, object and compartments, respectively. The
following characteristics, which are typical of this problem, differ
from the ones addressed in this study: (a) the height of a pack-
ing pattern is not limited by physical walls, but only by load bal-
ancing and/or stability constraints; (b) the containers are standard-
ized, they have the smaller sides with the same dimension and fre-
quently the same height. Therefore, the variety of containers with
relation to their spatial dimensions is low (typically there are only
two or three container types); (c) due to the characteristics of ship
and containers, the containers are arranged in independent stacks
with fixed orientation. Therefore, the resulting packing patterns are
guillotine along the height, and, due to the container sizes, they
are frequently also guillotine along the other two dimensions; (d)
the larger side of a container is relatively large and typically oc-
cupies between 50% and 100% of the smaller side of the bay; (e)
given the metallic structure of the containers, there is no concern
with damages of a container due to the pressure applied by other
containers placed above it.

As mentioned before, the problem of loading boxes in a multi-
compartment vehicle can also be seen as a Container Loading Prob-
lem in which multiple containers or pallets are available for pack-

Fig. 1. Example of a multi-compartment container.

ing the boxes. To the best of our knowledge, unlike the problem
addressed in this study, these problems do not consider several
objects in a same vehicle respecting, for example, the load balanc-
ing and/or multiple destinations of the boxes (see, e.g., Chen et al.,
1995; Chan et al., 2006; Eley, 2003).

3. Problem definition

Consider a vehicle that has a set of compartments which are
available to cargo packing. These compartments can be directly ac-
cessed through doors on the vehicle sides, and they are arranged in
contiguous rows. The compartments have all the same length and
width, but they can have different heights due to the axles and
wheels of the truck. There are two rows of compartments along
the smaller side of the vehicle, while along the larger side the
number of rows can vary according to their types. Fig. 1 shows
a scheme of a multi-compartment container. For the sake of sim-
plicity, in this figure all the compartments have equal sizes.

All the compartments and boxes are rectangular hexahedrons
(cuboids). The boxes are rigid, they have different dimensions and
they must be orthogonally arranged inside the vehicle compart-
ments without necessarily obeying a specific pattern and/or in hor-
izontal layers. Each layer has already defined an optimal packing
pattern for boxes of a same type (i.e., with the same dimensions,
weight and load bearing strength). The layers are separated from
each other (or from other unbound items) by rigid sheets that have
the same length and width of the compartment.

The vehicle is loaded in a logistic cell (origin) and its route is
predefined by a sequence of stops (destinations) that it must fol-
low to serve the customers. This route is previously determined by
a delivery routing system of the company (in the studied company,
there may be hundreds of vehicles). The demands of all customers
are known in advance. All the boxes required by the customers in
the predefined route must be packed inside the vehicle and the
following constraints must be met:

C1: Boxes orientation. The boxes have fixed vertical orientation;

C2: Cargo stability. The boxes must be stabilized along
the whole route, either by other boxes or by the con-
tainer/compartment floor and walls. A layer offers support
to the boxes placed above it, provided that there is a mini-
mum (predefined) number of boxes in this layer;

C3: Load bearing strength of the boxes. In any stacking, a box
placed below other boxes must have enough resistance to
support the pressure that is applied over its top face;

C4: Load balancing. The vehicle must be well-balanced along the
whole route, with relation to both axes x and y, i.e., the real
position of the center of gravity of the cargo must not be far
away from the ideal position of the center of gravity of the
vehicle. Unlike constraints C1-C3, which are hard constraints
and must be always met, constraints C4 are soft, i.e.,, a not
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Fig. 2. Examples of horizontal layers.
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Fig. 3. Example of packing pattern for one of the container compartments.

so well-balanced vehicle is not prevented from being used
to serve the customers.

In this study, our objective is to minimize the handling of boxes
inside the vehicle compartments along its route among all fea-
sible solutions that pack all boxes into the vehicle. A box from
stop k' (i.e., that must be unloaded at stop k') needs to be re-
located in a stop k only if it is placed above boxes from stop k,
with k' > k. As constraints C4 are soft, the load balancing devi-
ations are also penalized in the objective function. According to
Wascher et al. (2007), this problem can be seen as an extended
three-dimensional packing problem, once it extends the concept of
packing/cutting items in objects, for example, due to the minimiza-
tion of the handling of items inside objects along a route. How-
ever, the associated problem of how to pack boxes inside objects
does not fit perfectly the typology proposed by the authors, once
it does not address the maximization of the outputs (selection of
items to be packed in the objects) or the minimization of the in-
puts (selection of objects to pack the items), but all the items and
objects must be used for the packing, while satisfying the related
constraints.

4. Proposed solution approach

The proposed solution approach is a hybrid method with a
heuristic that aims at packing the boxes in horizontal layers, sepa-
rated by physical dividers which are often used in the distribution
of beverages to protect the loaded cargo and help provide verti-
cal stability, with the help of simplified mathematical models of
the problem. The following types of horizontal layers are consid-
ered: complete, which already have a predefined packing pattern,
are made up of boxes of the same type and there are no stacked
boxes; incomplete, which do not have a predefined packing pattern
and are made up of boxes that are not in complete layers (residual
boxes). The length and width of a complete or incomplete layer
are the same of a compartment. The height of a complete layer is
defined by the box type it contains, while the height of an incom-
plete layer is given by the highest position of one of the boxes that

it contains. Fig. 2 shows examples of complete (patterns a and b)
and incomplete (pattern c) layers.

Fig. 3 shows on the left an example of packing pattern for a
container compartment with the layers shown in Fig. 2 (the yellow
sheets represent the physical dividers), while on the right it shows
a real packing pattern using horizontal layers for packing bever-
ages in a compartment. Note that a complete layer always allows
the placement of a divider above it, and therefore it can provide
vertical stability for the boxes placed above it.

The heuristic presented here is inspired by the way that the
beverage company that motivated this study packs the boxes in-
side the container, i.e., placing them in complete layers whenever
possible. It assumes that:

A1l: The relocation of boxes at a stop consists of removing and
temporarily placing them in a zone outside the vehicle. Im-
mediately after all boxes from this stop are unloaded from
the vehicle, the relocated boxes are loaded back;

A2: The relocation of boxes is penalized by a function of the
number and weight of the relocated boxes. Additionally, as it
was observed in practice, minimizing the handling of boxes
is considered more important than minimizing the load bal-
ancing deviations;

A3: The position of the boxes placed inside the vehicle (i.e.,
their front-bottom-left corners), defined with relation to the
origin of a Cartesian coordinate system (see Fig. 1) before
the vehicle performs its delivery route:

- cannot be changed along the route with relation to both
axes x and y;

- can only be changed along the route with relation to axis
z, in the case in which all boxes of a given layer, placed
below, are unloaded from the vehicle. In this case, the
boxes above this layer in the same compartment are all
moved down until they are supported by another layer
or by the compartment floor.

A4: Any box can always be reached, even though this implies
in relocating other boxes;
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Fig. 4. Basic steps of the proposed heuristic.

A5: The position of the center of gravity of a layer is located at
the geometric center of this layer;

A6: The container, the boxes and the dividers placed between
layers are all rigid bodies;

A7: The weight above a layer is homogeneously distributed
among the boxes on this layer;

A8: The load bearing strength of a box is homogeneously dis-
tributed over the area of its top face (i.e., each box supports
the same admissible pressure in each point of its top face);

A9: The density of each box is homogeneous;

A10: The bottom faces of all boxes must be completely sup-
ported by other boxes, layers or the compartment floor (i.e.,
full support);

A11: For stability reasons, as it was observed in practice, incom-
plete layers cannot be placed below any complete layer in
the same compartment;

A12: The walls of the compartments, as well as the dividers
placed between layers, have negligible thicknesses;

A13: The boxes on a complete layer cannot be stacked.

In the following, the steps that compose the proposed heuristic
are explained in detail. For reasons of organization, the definitions
and notation used are presented in Appendix A, the pseudocodes
are presented in Appendix B, and the mathematical formulations
are presented in Appendix C.

The proposed heuristic can be divided into four basic steps,
which are shown in Fig. 4.

4.1. Basic step 1

4.1.1. Generating the complete layers

Initially, given the available number of boxes of each type, we
try to generate the largest possible number of complete layers. To
this end, boxes of the same type are assigned to layers in inverse
order of the vehicle stops, while they can be packed in these lay-
ers. Fig. 8 (see Appendix B) describes the procedure gComp() that
is used for generating the complete layers. Thereby, the residual
boxes, that can only be placed on the top of the compartments
due to stability reasons (see assumption All at the beginning of
Section 4), tend to be those ones required by the initial stops. Note
that a complete layer already has a predefined packing pattern and,
therefore, it is not necessary to define the position and orientation
of the boxes while generating them.

4.2. Basic step 2

4.2.1. Generating the incomplete layers

The incomplete layers are generated using a constructive proce-
dure respecting the practical constraints of the problem. Fig. 9 (see
Appendix B) describes the procedure ginc() that is used to generate
the incomplete layers. First, the residual boxes are sorted in a list
in inverse order of the vehicle stops. As a first tiebreaker, we use
the height of the boxes in decreasing order, and, if necessary, as a
second tiebreaker, we use the load bearing strength of the boxes
in decreasing order.

Following the defined order for the residual boxes, we try to
sequentially pack them in a same incomplete layer. If after this at-
tempt there are still not packed residual boxes, a new incomplete
layer is generated and the process is repeated with this new layer
and with the residual boxes still not packed. To try to define the
position and the orientation of the residual boxes in an incomplete

layer, the First Fit (FF) and Best Fit (BF) heuristics (described ahead)
are used. Fig. 10 (see Appendix B) describes the procedure pRes()
that is used to try to define the orientation and position of the
residual boxes inside the incomplete layers.

The incomplete layers must have their heights limited to the
heights of the compartments (that can be different). To this end,
for every new incomplete layer that is generated, a new compart-
ment is chosen as reference to limit the height of this layer. The
compartments are chosen by their heights in increasing order, and,
with this, we seek to allow that the first generated layers fit in
a larger variety of compartments, thus increasing the chances of
finding a feasible and efficient packing.

Two attempts of packing the residual boxes are performed. In
one of the attempts the position and orientation of the residual
boxes in the incomplete layers are defined using the FF heuris-
tic, while in the other attempt the BF heuristic is used. If both at-
tempts lead to a feasible solution (i.e., all residual boxes are packed
in the incomplete layers), as a tiebreaker, we choose the solution
whose sum of the heights of the incomplete layers is smaller.

4.2.2. First fit and best fit heuristics for packing the residual boxes

Initially, only position (0,0,0) of an incomplete layer is available
and each residual box placed on the layer defines up to nine po-
sitions available for packing the next residual boxes (see Fig. 6 in
Appendix A). Every packed box also makes unavailable the posi-
tions it occupies.

In order to try to define the position and orientation that the
next residual box is packed in an incomplete layer, two heuristics
are used:

(a) First Fit (FF). The available positions in the incomplete layer
are kept in a list in lexicographic order along axes z, y and
x, in this order. To try to pack the next residual box, we se-
lect the first position in this list and we try to place the box
in it. If no constraint is violated, the box is placed with its
current orientation in the selected position. Otherwise, we
try again to place the box in the selected position, but with
its other possible orientation (i.e., after horizontally rotating
the box by 90°). If the box has not yet been packed, we se-
lect the next position in the list of available positions, if any,
and the procedure is repeated (i.e., we try again to pack the
box). Note that this heuristic is a variation of the BackLeft-
Low and LeftBackLow heuristics of Tarantilis, Zachariadis and
Kiranoudis (2009) adapted to the present problem. With this
heuristic, we try to pack each residual box first in the lower
positions along the height of the incomplete layer, aiming at
minimizing the final height of this layer;

(b) Best Fit (BF). The available positions in the incomplete layer
are kept in a list in any order. We try to pack the next resid-
ual box in every available position with its two possible ori-
entations. If any, we select the feasible combination (posi-
tion and orientation) that maximizes the contact area be-
tween the faces of the current box with the faces of the
boxes already packed (i.e., the current box is packed with
this orientation). To favor the packing of boxes in the lower
positions along the height of the incomplete layer, aiming
at minimizing the final height of this layer, the contact area
between the top and bottom faces of the boxes is not ac-
counted for selecting the best feasible combination. In the
case of a tie between the feasible combinations, we select
the combination with the lowest position along the height
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of the incomplete layer. Note that this heuristic is a vari-
ation of the MaxTouchingAreaW, MaxTouchingAreaNoWallsW,
MaxTouchingAreal and MaxTouchingAreaNoWallsL heuristics
of Tarantilis et al. (2009) adapted to the present problem.
With this heuristic, we try to favor a more compact packing
of the residual boxes, and, at the same time, the placement
of boxes in the lower positions along the height of the in-
complete layer.

4.2.3. Avoiding the generation of layers that do not lead to a feasible
solution

A layer may need to be on the top of some compartment (i.e.,
with no other layer above it) by at least one of the following rea-
sons:

(a) Stability. The layer does not have an enough number of boxes
and/or it is incomplete;

(b) Fragility. The load bearing strength of the boxes on the layer
is not enough.

If in any moment of the route the number of layers that need
to be on the top of some compartment is larger than the number
of compartments, then a feasible solution cannot be obtained. To
avoid this situation, during the generation of the incomplete lay-
ers and after the generation of the complete layers, we perform a
procedure that aims at identifying and excluding the excess of lay-
ers that need to be on the top of some compartment. Fig. 11 (see
Appendix B) describes the procedure excL(k) that is used for identi-
fying and excluding the excess of layers that need to be on the top
of some compartment at a stop k. Note that these removed boxes,
as they are no longer packed in any layer, they are therefore resid-
ual boxes (by definition). We then try to pack these boxes in the
incomplete layers left. As an incomplete layer can only be on the
top of some compartment, this procedure prioritizes the exclusion
of layers with lower weight.

4.3. Basic step 3

4.3.1. Packing all layers

After generating all layers (complete and incomplete), we
try to pack them in the compartments by solving Model 1 (see
Appendix C), a Mixed Integer Linear Programming Problem (MILPP)
that considers all problem constraints and objectives. Note that
the geometric arrangement of the complete and incomplete layers
inside a compartment can be seen as a one-dimensional packing
problem (with additional loading constraints). The objective func-
tion of Model 1 aims at minimizing the penalties for the handling
of boxes along the route and the penalties for the load balancing
deviations. A feasible solution for Model 1 consists in packing all
layers while respecting the geometrical constraints, cargo stability
constraints, and load bearing constraints. If a feasible solution for
Model 1 is not obtained, we perform an iterative procedure in
search for a feasible solution. At each iteration of this iterative
procedure:

(a) We exclude a complete layer which can support less weight
above it along the route (i.e., which has the smallest load
bearing strength indicator), since it is possibly the hardest
to combine with the remaining layers;

(b) We try to pack the boxes of this excluded layer in the in-
complete layers (generating again the incomplete layers);

(c) With the new set of layers, we try to solve Model 1.

4.4. Basic step 4

4.4.1. Local search

If a feasible solution for the problem is obtained, we try to im-
prove this solution with a local search procedure, which consists
in seeking for an alternative packing for the residual boxes. First,

all residual boxes are removed from the solution obtained, and we
try to pack them back again on the top of the compartments using
an iterative procedure. Fig. 12 (see Appendix B) describes the pro-
cedure bLocal() that is used to perform a local search on the first
solution obtained by the heuristic. At each iteration of this proce-
dure the following steps are performed:

(a) We try to assign the residual boxes to compartments by
solving Model 2 (see Appendix C), another MILPP. The ob-
jective function of Model 2 aims at minimizing the penalties
for the handling of residual boxes along the route and the
penalties for the load balancing deviations. Note that this
objective function assumes that the residual boxes are all
packed in the compartments to which they are assigned. A
feasible solution to Model 2 consists in packing all residual
boxes in the compartments while respecting the geometri-
cal constraints, vertical support constraints and a limitation
on the total weight of the residual boxes assigned to a
compartment.

(b) We try to sequentially pack the residual boxes in their re-
spective compartments with a procedure similar to the one
used for generating the initial incomplete layers (see Fig. 9).
Fig. 13 (see Appendix B) describes the procedure ginc2() that
is used to try to generate again the incomplete layers, ac-
cording to the assignment of residual boxes to compart-
ments that was defined by the procedure bLocal(). Again,
the residual boxes are sorted in a list in inverse order of
the vehicle stops. As a first tiebreaker, we use the height of
the boxes in decreasing order, and, if necessary, as a second
tiebreaker, we use the load bearing strength of the boxes in
decreasing order. Following the defined order for the resid-
ual boxes, they are sequentially packed in their respective
compartments, provided that they respect the packing con-
straints. Two attempts for packing the residual boxes are
performed: in the first the position and orientation of the
residual boxes in the incomplete layers are defined using the
FF heuristic, while in the second the BF heuristic is used.
Each attempt generates a partial solution (i.e.,, a subset of
packed residual boxes) and we choose the solution whose
sum of the volumes of the packed residual boxes is larger.
Fig. 14 (see Appendix B) describes the procedure pRes2() that
is used to try to define the orientation and position of the
residual boxes inside the incomplete layers, according to the
assignment of residual boxes to compartments that was de-
fined by the procedure bLocal();

(c) The residual boxes assigned to a compartment that can be
packed are fixed in it. To ensure the convergence of the pro-
cedure, if a box of a given type cannot be packed in a com-
partment, then the residual boxes of the same type are for-
bidden from being assigned to this compartment in the next
iterations of the procedure.

5. Computational tests

In the following the generation of the test instances, the com-
putational results and their analysis are presented.

5.1. Information of containers and boxes

The characteristics of containers and boxes used in the com-
putational experiments are presented in the following. This infor-
mation was obtained from data provided by the beverage company
that motivated this study. The relative volume of boxes is the equiv-
alent volume metric employed by the beverage company. For a box
of type i € M, the relative volume is not necessarily related to the
real volume occupied by a box of this type (i.e., [jw;h;), but it is
given by v,.’e’ = 100/maxQ;, where maxQ; is the maximum number
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Table 1
Information of the containers used in the computational experiments.
Container Compartments (¢ € C)
ve 1 2 3 4 5 6 7 8 9 10
2 compartments 200 St St — — - — - - — -
4 compartments 400 St St St St - — - - - -
6 compartments 600 St St St St St St - — - —
8 compartments 760 St St St St Lo Lo St St — -
10 compartments 960 St St St St St St Lo Lo St St
Table 2 Table 3
Dimensions of the compartment types used in the computational ex- Data of the box types used in the computational experiments.
periments. R
ieM I (cm) w;(cm)  h;(cm) P (kg) o (kg/cm?) v{e‘
C T Length Width Heigh
ompartment Type ength (cm) i (cm) eight (cm) 1 13 20 12 231 0.10 021
Standard (St) 100 120 178 2 14 20 13 2.19 0.09 0.21
Lowered (Lo) 100 120 148 3 20 27 13 4.61 0.10 0.38
4 5 16 13 0.90 0.07 0.1
5 11 16 14 1.60 0.09 0.18
) . . 6 4 16 15 0.68 0.09 0.07
of boxes of type i that the company places above a pallet with this 7 13 13 16 2.06 0.10 0.19
box type only for storage purposes. Each container also has a given 8 19 28 17 5.70 0.03 1.09
maximum capacity defined for the total relative volume of boxes 9 28 42 18 23.06  0.06 278
placed in it, which is given by V", and we use this information in 10 13 16 19 2.00 0.09 017
some of the instance classes to limit the volume of boxes that can 1 17 24 20 >00 0.06 069
¢ ; h 12 13 17 20 2.97 0.08 0.29
be packed in the container (described ahead). 13 16 24 21 6.70 0.07 0.67
In total, we considered 5 container types. The capacities and the 14 19 26 22 6.60 0.08 0.60
number of compartments available in each one of them are pre- 15 20 27 23 6.53 0.07 0.65
sented in Table 1. In this table, St and Lo, respectively, refer to the 1? g ?g ;i g'ig g'g; 8'3(7]
compartment types standard and lowered, while the symbol “— " 18 12 18 24 320 007 033
indicates that the respective compartment is not present. Note that 19 14 21 24 3.95 0.07 0.42
containers with eight and ten compartments have lowered com- 20 14 20 25 3.40 0.07 0.30
partments due to the axles and wheels of the truck. Note also that 21 15 26 26 698 013 0.71
ntainers with two and four compartments are not used by the 22 31 42 27 1501007 1.43
co P : ed by 23 33 48 29 1501 0.5 238
beverage company, although they are also found in practice. In the 24 28 32 30 15.00 008 111
experiments, however, they are useful to evaluate the sensitivity of 25 35 51 32 29.52  0.08 2.38
the proposed hybrid approach. 26 18 28 33 10.00  0.06 1.14
. . 27 17 27 33 9.90 0.06 1.14
Table 2 presents the dimensions of the two types of compart 28 16 37 31 510 0.04 104
ments considered. 29 21 31 35 1290  0.08 1.00
Note that it is assumed that the walls of the compartments 30 31 41 36 2287  0.07 2.00
have negligible thicknesses (see assumption A12 at the beginning 31 24 35 37 16.00  0.06 1.67
of Section 4). Hence, L=2L"P and W=(|C|/2)W™P, In total, we 32 20 31 38 1445 007 1.25
considered 32 box types. The diverse characteristics of each one of Min. 4 B3 12 0.68 003 007
ypes. Max 35 51 38 2952 013 2.78
them are presented in Table 3. Avg. 18.09 2653 2394 821 0.08 0.85
Std. Dev.  7.60 9.76 7.91 7.28 0.02 0.72

5.2. Data for the instances generation

To evaluate the performance of the proposed hybrid approach,
21 instance classes were considered, and for each class 10 in-
stances were generated as described in the following.

5.2.1. Instances of Class 1

They correspond to instances 1R,...,10R. Instance 1R is a prac-
tical example obtained with data provided by the beverage com-
pany, while instances 2R,...,10R are generated from instance 1R by
randomly choosing the order in which the customers (stops) are
visited by the vehicle. With the instances of this class, the objective
is to evaluate the performance of the proposed hybrid approach
against a realistic case, and also to evaluate possible impacts on
the solution of the problem with changes in the boxes delivery or-
der.

As it was admitted, the first stop of the vehicle is destination 1,
the second stop of the vehicle is destination 2, and so on. To keep
this definition, instances 2R,...,10R are generated by exchanging the
demands of the stops of instance 1R (see procedure ginsti() de-
scribed in Fig. 15 of Appendix B). Note that this exchange is equiv-
alent to changing the sequence in which the customers of instance
1R are visited by the vehicle. Instance 1R has a container with 8

compartments and 18 stops, and the demands of each customer
(stop) are presented in Table 4.

5.2.2. Instances of Classes 2 to 21

They correspond to instances 1A,...,200A. These instances are
randomly generated by varying the container types, the number
of stops, the box types and their demands (see procedure ginst2()
described in Fig. 16 of Appendix B). With the instances of these
classes, the objective is to evaluate the performance of the pro-
posed hybrid approach against cases not covered by the instances
of Class 1.

In order to define an instance with this procedure, initially we
try to generate the demand of some box type for each different
stop of the vehicle. All generated demand is accepted (i.e., added
to the instance) if its relative volume plus the relative volume of
the demands already accepted are not larger than a given toler-
ance. Otherwise, we accept the largest possible parcel of the gen-
erated demand and the instance generation is finished. After trying
to define the initial demand for each stop, the demand generation
process is repeated for the same instance while it is possible.
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Table 4
Data of the demands of the box types for each customer of instance 1R.
keK ieM
1 37 12 13 16 19 22 25 28 29 30 31
1 1 1 0 o o 0 1 0 2 1 1 0 0
2 0 0 0 o0 o 0 5 0 0 0 24 0 O
3 0o 0 0 2 o 0o 0 O O 0O 3 0 o0
4 0 0 0 0 o 5 0 0 0O 0 3 0 0
5 0 4 0 O 1 0 0 1 2 2 1 0 0
6 0 0 0 o0 1 0 0 0O 0 O 0 0 O
7 6 0 0 0 o 0 0 0 2 0 9 0 o0
8 0 62 6 09 0 0 0 0 3 0 24 49 0
9 0 12 0 0 o 0o 0 2 2 0 0 0 O
10 8 23 22 3 0 0 2 0 6 4 30 0 0
11 0 0 0 o0 7 0 0O O 0 0 7 0 O
12 5 0 0 0 o 0 2 0 0 0 18 0 ©
13 2 0 0 0 o 0o ©0 18 0 0 0 0 O
14 4 33 0 4 o 0 5 0 3 5 19 17 10
15 0 0 0 0 o 0 2 0 0 0 38 0 O
16 20 13 0 26 0 0 6 0 10 0 22 0 0
17 0 2 0 o0 o 0 0 1 4 0 1 0 0
18 2 0 0 o0 0o 4 2 2 9 1 4 0 0
Table 5 ) ) cZ: total value of the penalties for the handling of boxes;
]t)oatza1 used for the generation of problem instances of Classes 2 cB: total value of the penalties for the load balancing de-
: viations. Note that, according to expression (15) (see
Class  Instances kmxym Container Appendix C), ¢Z has priority over ¢B (see also assump-
2 1A,...,10A 3 0.8 2 compartments tion A2 at the beginning of Section 4);
3 11A,...,20A 3 0.9 2 compartments aGap: absolute gap. This value is given by the absolute differ-
4 21A,...,30A 4 0.8 2 compartments ence between the smallest upper bound and the largest
5 31A,...,40A 4 0.9 2 compartments lower bound found:
6 41A,...,50A 6 0.8 4 compartments ) N ’ ) . L.
7 51A.... G0A 6 09 4 compartments rGap: relative gap. This value is given by the division of aGap
8 61A.,...,70A 8 0.8 4 compartments by the smallest upper bound found;
9 71A,....80A 8 0.9 4 compartments tP1¢P2: respectively the computational times, in seconds, spent
10 81A,...,90A 9 08 6 compartments with the solution of Models 1 and 2;
1 91A.....100A 9 05 & compartments test tdef:  respectively the computational times, in seconds, spent
12 101A,...,110A 12 0.8 6 compartments ’ ’ ’
13 111A,...,120A 12 09 6 compartments for generating the incomplete layers before and after the
14 121A,...,130A 12 0.8 8 compartments solution of Model 1 (i.e., respectively running the proce-
15 131A,...,140A 12 0.9 8 compartments dures described in Figs. 9 and 13);
}S }g:""jggﬁ }2 g:g g Egﬁg:gﬁ:gz A total computational Fime, in Sfec.onds.; .
18 161A,..,170A 15 0.8 10 compartments nPos: total number of available positions in the container for
19 171A,...,180A 15 0.9 10 compartments placing boxes and/or layers. In Model 1 this number is
20 181A,...,190A 20 0.8 10 compartments given by Z(Mc +1);
21 191A,...,200A 20 0.9 10 compartments ceC
nBox: total number of required boxes;
nP1, nP2: respectively the number of times that we tried to solve
Models 1 and 2 for a same instance;

Table 5 presents specific data used for the generation of the  nEx: number of layers identified as exceeding, and, therefore,
problem instances of Classes 2 to 21, where k™ is the maximum excluded from the solution (see the procedure described
number of stops that can be assigned, and v™ is a parameter that in Fig. 11);
constraints the total relative volume of boxes, v™ e R, 0 < '™ < 1. %res: percentage of residual boxes with relation to the total
The maximum number of box types that can be assigned is given number of required boxes;
by n™ =2|C|, and the largest demand of a box of type i € M that %BFest: percentage of times that the BF heuristic is chosen for
can be generated at once is given by b™ = [o.1vre /virel}. packing the residual boxes in incomplete layers before

solving Model 1. In the remaining times, the FF heuristic
5.3. Results generation is chosen for this purpose (see the procedure described
in Fig. 9);

Models 1 and 2 were solved using software IBM ILOG CPLEX %BFdef: percentage of times that the BF heuristic is chosen for
(version 12.5.1) with the default parameters. The computational packing the residual boxes in incomplete layers after
time spent to solve any instance of Model 1 was limited to 1200 s solving Model 2. In the remaining times, the FF heuristic
(20 min). The implementation codes were written in C#, compiled is chosen for this purpose (see the procedure described
in a 64-bit platform, and performed on a Intel Core i7-2860QM in Fig. 13);
at 3.6 GHz, with 8GB DDR3 SDRAM. The random numbers gener- %P1L: percentage of instances in which the solution obtained

ator used the method System.Random from the library of classes
Microsoft .NET Framework 4. Consider the following notation used
in the remaining of this section:

after solving Model 1 could be improved with the lo-
cal search procedure (see the procedure described in
Fig. 12).
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We tried to solve all instances of the 21 classes (C1,...,C21) with
the proposed hybrid approach and Table 6 presents a summary of
the obtained results. Due to limitations of space, we only present
the average values for each class, which were rounded to two dec-
imal digits. The values for ¢Z, cB and |N"'| refer to the best solu-
tion obtained for each instance, while the values for rGap refer to
Model 1. Note that the values in the last line of this table corre-
spond to an average of average values. The table also presents the
detailed results for instance 1R.

5.4. Comments on the results

At least one solution was obtained by the proposed approach
for all 210 instances evaluated in this section. In 205 out of these
210 instances, a solution could be obtained by the local search
procedure described in Fig. 12 (local search). In 117 out of these
205 instances, the solution obtained with this procedure was bet-
ter than the initial solution (obtained with Model 1). In 107 out of
these 117 instances, the solution obtained was better only in what
concerns the load balancing deviations (it was the same in what
concerns the handling of boxes), while in the remaining 10 in-
stances it was also better in what concerns the handling of boxes.
The lower frequency of instances in which the penalties with the
handling of boxes are decreased by the local search procedure can
be explained by the fact that the boxes that are relocated, in most
cases, are in complete layers, which have their positions already
defined in the initial solution. Note that this fact is related to the
heuristic strategy of defining the residual boxes as the ones from
the first stops and also of initially trying to pack them in a smaller
number of layers.

It can also be observed that the performance of the local search
procedure tends to be better with instances with more compart-
ments (see %P1L). With a larger number of compartments there
are also more possibilities to assign boxes to compartments with
Model 2 (used by the local search procedure), which increases the
chances of a feasible solution to be found with this search. Note
also that, in these cases, the average number of times in which the
residual boxes are assigned with Model 2 also increase (see nP2).
One possible reason for this is that Model 2 preferably seeks to as-
sign residual boxes to compartments closer to the position of the
geometric center of the container (in order to reduce the penalties
with the load balancing deviations), and, therefore, in fewer com-
partments. As in these cases there is a larger number of residual
boxes (in absolute terms), there is also a larger number of resid-
ual boxes assigned to compartments, which reduces the chances of
these boxes to be packed at once, thus requiring new assignments
(i.e., new solutions of Model 2).

In the experiments with instances of Class 1, as expected, we
noted the influence of the delivery sequence in the objective func-
tion of the problem. The results indicate that either the handling
of boxes or the load balancing can play a relevant role in the def-
inition of routes of lower costs, in the case of a possible inte-
grated approach with vehicle routing problems (see, e.g., Junqueira
& Morabito, 2015; Hokama, Miyazawa & Xavier, 2016).

On average, for instances of Classes 2 to 21 with a same num-
ber of compartments, the penalties with the handling of boxes and
the load balancing deviations always increase with the increase of
the demands (i.e., with the increase of the value of v™ used in the
experiments). These penalties also usually increase with the num-
ber of vehicle stops. In particular, we observed a large increase of
these penalties for Classes 17, 19 and 21. The solutions for some
of the instances of these classes exceeded 1000 units of relocated
boxes along the route.

The iterative procedure applied in the cases in which a feasible
solution could not be obtained (see lines 3 to 15 in Fig. 7) needed
to be run in only one of the evaluated instances (one instance of

Class 4, causing an increase in the value of nP1). However, for this
single instance it proved to be effective, being able to find a feasi-
ble solution.

The procedure used for identifying and excluding the excess
of layers that need to be on the top of some compartment (see
Fig. 11) needed to be run in only two of the evaluated instances
(one instance of Class 6 and one instance of Class 8, see nEx). In
total, three complete layers were excluded and their boxes were
placed on incomplete layers with this procedure. In these two eval-
uated cases, the procedure proved to be effective, i.e., it allowed
the generation of a feasible set of complete and incomplete layers
that could later be all packed inside the container.

With relation to the FF and BF heuristics used for packing the
residual boxes in the incomplete layers, we note that both were
effective for generating the solutions. On average, for the incom-
plete layers generated with the procedure described in Fig. 9, both
heuristics were chosen in an approximate number of times (see
%BFest), while for the case in which the incomplete layers were
generated with the procedure described in Fig. 13, the BF heuris-
tic was always chosen in more than 62% of times (see %BFi¢f). We
note that the BF heuristic is chosen as the tiebreaker criterion in
both procedures. For the case in which the incomplete layers were
generated with the procedure described in Fig. 9, the BF heuris-
tic is chosen for breaking a tie in 10% of times, while for the case
in which the incomplete layers were generated with the procedure
described in Fig. 13, the BF heuristic is chosen for breaking a tie in
approximately 70% of times.

In the times in which the FF heuristic was chosen (i.e., in the
times in which the BF heuristic was not chosen), it was due to
the fact that it was able to generate a more compact packing (in
the case of the procedure described in Fig. 9) or that it was able
to pack a larger volume of boxes in a given iteration (in the case
of the procedure described in Fig. 13), when compared to the BF
heuristic. Note that the FF heuristic packs each residual box always
in lower positions on a layer. As the boxes (of a same stop) being
packed are sorted by their heights, the packing surface generated
above them tends to be relatively flat, which facilitates the packing
of the next boxes. On the other hand, the BF heuristic, when trying
to place each box in a position that maximizes the contact area
between the lateral faces of this box with the lateral faces of other
boxes, although it favors a compact packing, it can generate a more
fragmented packing surface than the FF heuristic, which in some
cases makes it difficult the packing of the next boxes.

In what concerns the computational times, t"! increase a lot
with the increase in the number of compartments. This growth is
not evident among the classes with more than four compartments
(Class 1, and Classes 10 to 21), because in almost all instances of
these classes the time limit defined for the solution of Model 1 was
reached. Note that, for the instances with more compartments, the
number of complete layers and the number of possible positions in
the compartments are larger. These values, together with the num-
ber of vehicle stops, influenced the size of Model 1. In the case of
tP2, they usually increase with the increase in the number of com-
partments and residual boxes, but they are always low (on average,
less than 1 s for almost all cases). t&t and t% also increase with
the increase in the number of residual boxes and they are always
low (on average, they are always less than 2 and 4 s, respectively).

In 76 out of the 210 evaluated instances, the relative gaps (rGap)
of the solutions obtained with Model 1 are equal to 0, i.e., these
solutions were proven optimal by CPLEX. Note that these solutions
are optimal for the set of complete and incomplete layers made
available, which does not mean that these solutions cannot be im-
proved with the procedure described in Fig. 12, once it modifies
the incomplete layers already defined in previous steps of the pro-
posed approach. In fact, it could be observed in some instances of
classes with up to four compartments (Classes 2 to 9). Except for



Table 6
Summary of the results obtained with the proposed hybrid approach for instance 1R and for all instances of Classes 1 to 21.

Z cB ! 2 test tdef tA IN'| IN"| %res nEx nP1 nP2 %BFest  %BFUeS nPos nBox pp rGap  %PIL
1R 120.18 10,525.57 1200.89 0.62 1.39 3.68 1219.60 32.00 3.00 21.15 0.00 1.00 3.00 - - 72.00 780.00 7358.98 1.00 -
Cc1 436.49 17,056.10 1200.68 0.64 1.32 3.07 1217.74 32.00 3.60 21.15 0.00 1.00 3.14 70.00 81.82 72.00 780.00 7358.98 1.00 40.00
c2 34.03 131.03 0.25 0.02 0.21 0.34 0.89 7.40 1.50 17.52 0.00 1.00 1.00 40.00 100.00 13.20 408.60 1535.96 0.00 50.00
c3 58.28 144.45 2.81 0.02 0.47 0.67 4.09 10.60 1.40 17.71 0.00 1.00 1.00 50.00 100.00 16.40 764.40 1805.34 0.00 40.00
C4 66.62 203.43 0.32 0.02 0.24 0.36 1.05 7.30 1.30 17.67 0.00 1.10 1.00 30.00 90.00 13.20 408.60 1535.96 0.00 30.00
C5 81.72 228.97 141 0.02 0.42 0.66 2.67 10.60 1.20 17.71 0.00 1.00 1.00 40.00 90.00 16.40 764.40 1805.34 0.00 20.00
6 16.90 775.88 58.98 0.13 0.66 134 61.67 14.70 2.30 20.02 0.20 1.00 1.70 20.00 70.59 30.00 643.40 3028.79 0.00 20.00
Cc7 22.24 750.35 703.99 0.11 0.73 1.39 707.67 18.30 1.90 14.89 0.00 1.00 1.40 40.00 64.29 33.20 812.40 3584.54 0.10 50.00
Cc8 13.07 1025.70 48.28 0.17 0.73 1.34 51.43 14.90 2.60 19.02 0.10 1.00 1.50 50.00 86.67 30.00 643.40 3028.79 0.00 70.00
c9 26.87 1419.59 709.01 0.41 0.60 1.08 794.52 18.30 2.00 14.89 0.00 1.00 1.30 30.00 76.92 33.20 812.40 3584.54 0.37 60.00
Cc10 0.00 389.32 1200.66 0.21 0.74 1.44 1207.49 24.80 2.50 14.41 0.00 1.00 1.60 20.00 62.50 52.20 1039.00 4629.48 0.88 40.00
C11 88.01 1711.33 1099.30 0.21 0.76 1.50 1105.77 24.80 3.30 15.95 0.00 1.00 1.70 70.00 64.71 49.80 1031.30 5122.72 0.89 50.00
C12 2.47 1272.09 1201.39 0.29 0.66 1.46 1209.19 24.80 2.60 14.41 0.00 1.00 1.80 20.00 77.78 52.20 1039.00 4629.48 0.94 40.00
C13 22.39 2351.16 1201.51 0.29 0.72 147 1209.49 24.80 3.10 15.95 0.00 1.00 1.70 30.00 76.47 49.80 1031.30 5122.72 0.93 70.00
C14 0.00 582.08 1200.88 0.57 0.69 1.59 1210.96 30.10 4.60 13.32 0.00 1.00 1.60 40.00 81.25 64.20 1180.50 5914.39 0.99 70.00
C15 56.32 3564.29 1200.67 0.59 0.94 2.36 1213.97 35.90 3.70 12.70 0.00 1.00 2.40 50.00 87.50 73.00 1179.00 6808.12 0.99 60.00
C16 3.80 1652.58 1201.26 0.58 0.71 1.53 1213.78 30.10 3.70 13.32 0.00 1.00 1.50 50.00 86.67 64.20 1180.50 5914.39 0.97 80.00
C17 389.54 6489.75 1200.93 0.54 0.94 2.28 1218.34 35.90 3.70 12.70 0.00 1.00 2.50 40.00 64.00 73.00 1179.00 6808.12 1.00 70.00
C18 45.99 4514.83 1200.93 0.73 0.84 2.19 1222.15 42.30 4.60 9.95 0.00 1.00 2.00 30.00 80.00 91.20 2023.10 7814.03 1.00 90.00
C19 734.18 9767.12 1200.53 0.94 1.15 2.67 1228.36 44.40 4.40 12.20 0.00 1.00 2.22 40.00 90.00 93.80 2078.40 8691.06 1.00 70.00
C20 54.18 6886.02 1201.25 1.01 0.86 2.15 1230.47 42.40 5.00 9.92 0.00 1.00 1.90 20.00 78.95 91.10 2023.10 7814.03 0.99 90.00
C21 995.66 13,834.27 1200.99 0.89 1.22 3.07 1235.75 44.40 3.90 12.20 0.00 1.00 2.22 60.00 85.00 93.80 2078.40 8691.06 1.00 60.00
Avg. 149.94 3559.54 815.10 0.40 0.74 1.62 826.07 25.66 3.00 15.12 0.01 1.00 1.72 40.00 80.72 52.67 1157.15 5010.85 0.62 55.71
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one single instance with six compartments, these 76 instances are
all of classes with up to four compartments. For the remaining in-
stances, the relative gaps are almost always equal to 1, or close to
this value, which means that nothing (or very little) can be stated
about the quality of these solutions, in relative terms (see the def-
inition of rGap). However, in 149 out of the 210 instances, we note
that the absolute gaps (aGap) of the solutions obtained are smaller
than w?[@? + Min; ¢ y(@?P;)], i.e., the smallest unit of penalty for
the handling of boxes. It means that these solutions are “optimal
for the handling of boxes” (no unit of penalty for the handling of
boxes can be further diminished from them).

The solutions obtained with the proposed approach were not
compared to the solutions employed in practice, since they were
not made available by the beverage company. During visits to this
company, its logistics manager reaffirmed the difficulty in finding
feasible vehicle loading plans that, besides packing all boxes of the
route in the vehicle compartments, also meet all remaining con-
straints of the problem. The logistics manager found the solutions
produced by the proposed approach potentially good to be used in
practice.

6. Conclusion

In this paper, we presented a hybrid approach for the solution
of a three-dimensional packing problem that arises in real situa-
tions, as it is the case of the beverage distribution using trucks
with multi-compartment containers. The approach is based on the
generation of horizontal layers and in the solution of smaller pack-
ing and assignment problems. The used formulations contemplate
several practical packing considerations and they allowed that a
large variety of instances based on real data could be solved. Sev-
eral constraints must be met along the vehicle route, which can
make it harder the solution of instances of larger sizes (i.e., with
larger number of layers, stops, compartments and possible posi-
tions inside the compartments).

As it is usual in real situations, it was assumed that the vehicle
route is known in advance (provided by a vehicle routing system)
and that all required boxes must be packed inside the vehicle. In
practice, if a feasible solution is not obtained, it is necessary to
change the predefined route plan and/or to consider an additional
new delivery route and/or to use a solution that violates some of
the constraints involved. Computational tests were performed with
this approach and a large variety of instances based on real data
from a soft drink company that motivated this study, and the re-
sults show that the proposed solution approach was able to find
feasible solutions for all considered test instances, which is hard
to achieve in practice with the manual procedures that the com-
pany has available, due to difficulties with the arrangement of all
boxes inside the compartments along the vehicle route, besides re-
specting other problem constraints. We also note that the decision
makers from the beverage company found that the proposed solu-
tion approach has good potential for improving the manual proce-
dures that the company has available, which usually entail a lot of
handling of boxes inside the container along the truck route.

We note that this is the first study focusing on a vehicle packing
problem with multi-compartment containers in the context of bev-
erage distribution, and we believe that the proposed models and
heuristic can be useful to motivate future researches that address
and extend this problem. In particular, the proposed solution ap-
proach has good potential for being embedded into existing expert
and intelligent systems for supporting the decision making process.

An interesting line of research would be to develop an effective
validation of the proposed hybrid approach using it in the com-
pany on a daily basis to better evaluate the advantages and disad-
vantages of the loading plans generated by the approach in com-

parison with the ones used in the company. Some extension pro-
posals also include:

(a) Enhance the proposed solution approach, e.g., trying to ini-
tially solve Model 1 with a fast heuristic. We note that for
some instances, particularly those with a larger number of
layers and compartments, the solutions obtained relatively
high penalties with the handling of boxes and the load bal-
ancing deviations. Additionally, for many of these instances
it was neither possible to prove the optimality of the solu-
tions obtained with Model 1, nor to obtain smaller relative
gaps (within the defined 20 min time limit).

(b) Allow the possibility of relocating boxes, at each stop, to a

different position inside the vehicle, for example, to other

compartments. This relocation could be advantageous to
strategically reduce the handling of boxes and to obtain fea-
sible solutions to instances whose solutions would be previ-
ously infeasible. We remind that, in this study, it was con-
sidered the relocation of a box in only one special case, that
is when all boxes on the layer below it are unloaded (see

assumption A3 at the beginning of Section 4);

Evaluate other objectives that can be related to reducing the

boxes unloading time along the route, as, for example, try-

ing to keep boxes from a same stop in fewer compartments
and/or in closer compartments;

(d) Combine the three-dimensional container loading problem
of this study with vehicle routing problems, so that the ve-
hicle routing and cargo loading decisions are considered si-
multaneously.

—
g
~—

Declaration of interests

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper

Credit authorship contribution statement

Rodolfo Ranck Jinior: Methodology, Software, Validation, For-
mal analysis, Data curation. Horacio Hideki Yanasse: Conceptu-
alization, Project administration. Reinaldo Meorabito: Conceptual-
ization, Supervision. Leonardo Junqueira: Investigation, Writing -
original draft, Writing - review & editing, Visualization.

Acknowledgements

The authors would like to thank the two anonymous review-
ers for their useful comments and suggestions, and the Brazilian
soft drink company for the valuable collaboration with this study.
This research was partially supported by CAPES, CNPq and FAPESP
(Grant 14/16906-1).

Appendix A. Definitions and Notation

To indicate the position of items and objects, we use as refer-
ence the origin of the axes x, y and z that are adjacent to the faces
1, 2 and 3 of the cuboid shown in Fig. 5. This point is referred
to as front-bottom-left corner (FBLC). Note that the container, the
compartments, the layers and the boxes have all their own FBLC.

The notation employed in the two next sections follow a
same format, name’Pecfication ~— in which the name may come
index 1,....index N
with some emphasis (e.g., an upper dash). The specification is
used to differentiate notation with a same name. In the case
of lists, to indicate a specific element, we employ the format

list namesPeci/ication [position in the list]. Consider the following

) index 1,....index N
notation:
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Face Nomenclature
1 Bottom face
2 Front face
3 Left face
4 Back face
5 Right face
6 Top face

Fig. 5. Reference cuboid for items and objects.
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Basic Sets:

K: set of vehicle stops;

C: set of container compartments;

N set of complete layers;

N': set of incomplete layers;

N: set of all layers, i.e., N=N'UN";

M: set of required box types;

M set of residual boxes.

Indexes:

k, K- a stop, k, k' € K;

c: a compartment, ¢ € C;

I a layer, j, j/ € N;

i a box type, i € M;

fi a box of any type and stop, f e M’;

s, s positions in a compartment for placing a layer j € N;

pp: possible positions along axis x;

q q: possible positions along axis y;

o possible positions along axis z.

Parameters:

M sufficiently large positive number;

L, W, H: length, width and height of the container, respectively
along axes x, y and z;

Leomp; length of any compartment along axis x;

weemp: - width of any compartment along axis y;

H™ . height of a compartment ¢ e C along axis z;

DPerqc: position of a compartment ¢ € C inside the container,
respectively along axes x and y;

I;, w;, hi:  length, width and height of a box of type i € M, respec-
tively along axes x, y and z;

f-lj : height of a layer j € N;

o(f): type of a box f e M’;

kjma" : last stop in which boxes on layer j € N are unloaded;

b;: number of residual boxes of type i € M;

bi: number of boxes of type i € M required by stop k € K;

P;: weight of a box of type i € M;

PkA total weight of the cargo when only boxes from stops k’
> k € K are inside the vehicle;

Py weight of a layer j € N when only boxes from stops k' >
k € K are inside the vehicle;

PR maximum weight that a stack of complete layers, if any,
placed in a compartment ¢ € C, can support above it
when only boxes from stops k' > k € K are inside the
vehicle. If there are no complete layers in compartment
¢, then PI% = M;

Qi number of boxes on a layer j € N when only boxes from
stops k' > k € K are inside the vehicle;

Q7 number of stops previous to the stop of the residual box

f € M" in which the boxes on complete layers are un-
loaded from compartment c € C. Therefore, it defines the
number of times that box f will need to be relocated if
it is packed in compartment c;

ﬂjk:

isBF:

maximum supported pressure by any point on the top
face of a box on the complete layer j € N';
minimum number of boxes that the complete layer j
e N needs to have so that it can provide vertical sta-
bility for the boxes placed above it. In all the compu-
tational experiments (see Section 5.3) the value tﬁj =
4, j e N was used, that is, for any stop k e K, four boxes
on a complete layer j € N’ (e.g., one at each corner)
are enough to provide vertical stability to boxes placed
above this layer;
sum of all areas of the top faces of boxes placed on the
complete layer j € N’ when only boxes from stops k' > k
€ K are inside the vehicle;
indicator of the load bearing strength of the complete
layer j € N’ along the route. The higher this value, the
more resistant to stacking a layer j is. It is assumed
that this indicator for a given stop k € K, when only
boxes from stops k' > k e K are inside the vehicle, is
given by: &;mj/P2, if Qj > v;, and it is equal to 0
otherwise. From this relation, note that if layer j has
1,...,%;—1 boxes, the referred indicator is equal to
zero, once no box can be placed above it (for stabil-
ity reasons). Note also that this indicator is higher the
lower the total weight inside the vehicle for stop k
(PkA) and, with this, we seek to reflect the load bear-
ing strength of layer j against the other layers inside the
container, i.e., its relative load bearing strength. As one
aims an indicator for the whole route, we propose that:
R = > (5jnjk/PkA)/k;T‘ax,j e N, ie, R; is given
{keKIQj =¥}
by the average of the load bearing strength indicators
of the complete layer j for all stops from which it has
boxes;
it is equal to 1 if the Best Fit (BF) heuristic for pack-
ing residual boxes is activated, and it is equal to O if
the First Fit (FF) heuristic for packing residual boxes is
activated;
parameter related to the desired vertical stability, o €
R, 0 <o < 1. In one extreme, o =1 indicates that the
bottom face of any box must be 100% supported by the
top faces of other boxes or by the object floor. In the
other extreme, o =0 indicates that there is no concern
about the vertical stability of the boxes. In all the com-
putational experiments (see Section 5.3) the value o =1
was used, that is, the minimum vertical support must
be 100% (i.e., full support). Note that, as o =1, a residual
box cannot be placed above other residual boxes from
previous stops (see procedure vStab(f, p, q, r, j) ahead)
and, therefore, residual boxes can always be unloaded
without relocating any other box;
parameters related to the desired horizontal stability,
BeR, 0<B<1;, yeR, 0<y <1. In one extreme,
B=1(y=1) indicates that the left (front) face of any
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box must be 100% supported by the right (back) faces
of other boxes or by the object left (front) wall. In the
other extreme, 8 =0(y =0) indicates that there is no
concern about the horizontal stability of the boxes. In all
the computational experiments (see Section 5.3) the val-
ues B =y =0 were used, that is, no minimum horizontal
support is required;

it is equal to 1 if the complete layer j € N’ has boxes
from stop k € K, and it is equal to O otherwise;

it is equal to 1 if the complete layer j € N’ has boxes

from stops k' > k € K, and it is equal to O otherwise;
it is equal to 1 if the residual box f € M’ is from a stop

k' > k € K, and it is equal to O otherwise;
it is equal to 1 if the complete layer j € N’ has 0 or at

least 1/}j boxes, when only boxes from stops k' > k € K
are inside the vehicle, for k=1, ..., k?}a". In this case, we

say that layer j vertically stabilizes layer j'. Otherwise, it
is equal to 0;

it is equal to 1 if there are no complete layers in com-
partment c € C, or if any complete layer je N’ packed in
compartment ¢ has 0 or at least 1/}1- boxes, when only
boxes from stops k' > k e K are inside the vehicle, for
k=1, ..., k*, in which k* is the stop of the residual box
f e M. In these cases, we say that compartment ¢ pro-
vides vertical stability to box f. Otherwise, it is equal to
0;

ideal position of the center of gravity of the cargo
inside the vehicle, respectively along axes x and y.
This center of gravity is defined using the Cartesian
coordinate system for the container, whose position
(0,0,0) is located at the FBLC of the container. In all
the computational experiments (see Section 5.3) the
values g"* =L/2 and g"¥ = W/2 were used in Models 1 and
2 (see Appendix C), that is, the ideal position for the
center of gravity of the vehicle is defined as the position
of the geometric center of its container;

position of the center of gravity of layer j € N, when

only boxes from stops k' > k € K are inside the vehi-
cle, respectively along axes x and y. This center of gravity
is defined using the Cartesian coordinate system for the
own layer, whose position (0,0,0) is located at the FBLC
of the layer. These parameters are known in advance, be-
fore solving Model 1;

tolerance values for the load balancing deviations, re-
spectively along axes x and y, such that &* > 0, &¥ >
0. In all the computational experiments (see Section 5.3)
the values ¢¥ =P /|C|-0.02-L and &¥ = PA /|C|-0.02 -
W were used in Models 1 and 2, that is, the tolerance
for the load balancing deviations, respectively along axes
x and y, is given by the average weight of the boxes in
a compartment, when all required boxes are in the con-
tainer, multiplied by 2% of the container sizes along axes
x and y;

relative weights, respectively, for the load balancing de-
viations and for the handling of boxes;

relative weights, respectively, for the weight and for
the number of relocated boxes. In all the computational
experiments (see Section 5.3) the values w? =0.2 and
@w?1=0.8 were used in Models 1 and 2, that is, the
penalty for the handling of boxes is given by 20% of
the weight and 80% of the number of these boxes. Ad-
ditionally, the weights for the handling of residual boxes
along the route and for the load balancing deviations in
the objective function are equal, that is, %’ =w?=1 in
Models 1 and 2;

/.
yjsc'
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upper bound on the number of complete layers in a
compartment ¢ € G;

maximum number of complete layers whose sum of
heights is not larger than the height of a compartment ¢
e C

maximum number of complete layers that can be
stacked above the complete layer with largest load bear-
ing strength plus one unit;

parameter that if { =1, u. is an upper bound on the
number of complete layers in a compartment ¢ € C; if
¢ < 1, then it is not guaranteed that p. is still an up-
per bound and, therefore, it can make infeasible a so-
lution to the problem. Note that the size of the prob-
lem grows with the value of ¢. In all the computa-
tional experiments (see Section 5.3) the value ¢ =0.7
was used. This value was obtained after computational
experiments with several instances of Model 1. For the
computational experiments, { =0.7 was chosen for being
the smallest value that did not imply significant changes
in the solution quality, when compared to ¢ =1;

values of variables yj, j € N; ¢ € C; s € S, obtained after
solving Model 1.

Derived Subsets:

Se:

jc:

Lists:
listeomp;

listP% -
j

list™s:

soctop .
llStk :

set of vertical positions in which a complete layer can be
placed in a compartment ¢ € C. In a compartment, the
lower-valued positions have lower height in this com-
partment (i.e., a layer placed in position s is below an-
other layer placed in position s’ > s in the same com-
partment). This set is defined as:

SC:{5| seN, 0 <5< },ceC

set of vertical positions in which any layer j € N can
be placed in a compartment ¢ € C. As the incomplete
layers cannot be placed below the complete layers, but
only in the last position of a compartment, this set is
defined as:

if jeN
if jeN

seS.,

Sjc:{slszﬂc‘f‘], },jGN;CEC

list that has only the container compartments sorted by
their heights in increasing order;
list of the available positions for packing residual boxes

in the incomplete layer j € N”’. The positions in this list
are kept in lexicographic order along axes z, y and x, in
this order. Initially, there is no available position in this
list;

list of all residual boxes f € M’ sorted in inverse order
of the vehicle stops. In the case of a tie, the boxes from
the same stop are sorted by their heights in decreasing
order. If the tie persists, the boxes from the same stop
and with the same height are sorted by their load bear-
ing strengths in decreasing order;

list of all generated layers that, when only boxes from
stops k' > k € K are inside the vehicle, need to be on the
top of some compartment by at least one of the following
reasons: (a) stability: layer j has 1, ..., ¥; — 1 boxes and/or
it is incomplete; (b) fragility: layer j cannot be placed be-
low any other layer due to the load bearing strength of
its boxes. This list is sorted by the weights of the layers
in increasing order.
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Auxiliary Procedures:
vOver(f, p, q, 1, j):

vStack(f, p, q, 1, j):

vStab(f, p, q, 1, j):
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Fig. 6. Possible positions available for placing a residual box.

procedure that verifies if, when placing the
residual box f € M’ in position (p, q, r) of the
incomplete layer j € N”/, box f does not over-
lap another box already packed and it is com-
pletely inside the incomplete layer j € N'/;
procedure that verifies if, when placing the
residual box f € M’ in position (p, q, r) of the
incomplete layer j € N/, the maximum sup-
ported pressure by any point (p’, ¢/, ') on the
top faces of boxes already packed in the in-
complete layer j € N” is not exceeded by the
pressure applied by boxes placed above point
w.q. )

being i=¢(f) and k € K the stop of the resid-
ual box f € M/, this procedure verifies if, when
placing box f in position (p, g, r) of the incom-
plete layer j € N”’: the area of the bottom face
of box f in direct contact with the top faces of

boxes from stops k' > k, or with the floor of
the incomplete layer j € N/, is not smaller than
a(lyw;); the area of the left face of box fin di-
rect contact with the right faces of boxes from
stops k' > k, or with the left wall of the incom-
plete layer j € N”/, is not smaller than B(h;w;);
the area of the front face of box fin direct con-
tact with the back faces of boxes from stops k’
> k, or with the front wall of the incomplete
layer j € N”/, is not smaller than y (l;h;).

The domains of the coordinates p, g and r in an incomplete
layer j € N” (respectively with relation to axes x, y and z), can-
didates for some residual box to be placed in with its FBLC, are
given by what are known as extreme points (Crainic, Perboli &
Tadei, 2008). Once a residual box is placed on the layer it defines
up to nine positions available for packing the next residual boxes.
Fig. 6 shows these positions.

Appendix B. Related Pseudocodes

1. Begin main()

2. Generate the complete layers with procedure gComp() (Figure 8);

3. Repeat

4. Repeat

5. Generate the incomplete layers with procedure g/nc() (Figure 9);

6. If some residual box was not packed in the incomplete layers

7. End main()

8. Identify and exclude the possible excess of layers that need to be on the top of some

compartment with procedure excL(k) (Figure 11), run for each k = 1, ..., |K|;

9. While some layer is excluded with procedure excL(k);

10. Try to pack all layers j by exactly solving Model 1 (Appendix C);

11. If a feasible solution with Model 1 was not obtained

12. If there are no more complete layers

13. End main()

14. Remove the boxes on the complete layer j with the lowest R; and exclude this layer;

15. While a feasible solution with Model 1 is not obtained;

16. Store a copy of the solution obtained (solution I);

17. Remove all boxes on the incomplete layers of the solution obtained and exclude these layers;

18. Try again to pack the residual boxes in the obtained solution with procedure bLocal() (Figure 12);

19. Evaluate the objective function value of the new feasible solution obtained in step 18 (solution 2), if
any, with Model 1;

20. Return the best of the two solutions obtained;

21. End main()

Fig. 7. Heuristic main procedure.
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1. Begin gComp()
2. Define the number of generated layers equal to 0;
3. For k = |K|,...,1
4. ForieM
5. For f =1,..., by
6. If there is a layer j with boxes of type i and with available space (i.e., a layer with a
positive number of boxes of type i smaller than the maximum number of boxes of this type
that it can have)
7. Assign the box f of type i and stop k to layer j;
8. Otherwise
9. Generate an empty layer and assign the box f of type i and stop k to it;
10. End For
11. End For
12. End For
13. Remove all boxes on layers that are not full of boxes (i.e., that are not complete layers) and exclude
these layers;
14. End gComp()
Fig. 8. Procedure gComp() for generating the complete layers.
1. Begin glncQ)
2. Define two auxiliary variables (sets) initially empty: N"’ and N"'(®);
3. Activate the FF heuristic;
4. Try to pack the residual boxes in incomplete layers with procedure pRes() (Figure 10);
5. Store a copy of the generated incomplete layers in set N"/(D;
6. Activate the BF heuristic;
7. Try again to pack the residual boxes in incomplete layers with procedure pRes();
8. Store a copy of the generated incomplete layers in set N”'(?);
9. If not all residual boxes could be packed in the layers of set N’ or in the layers of set N'')
10. Return Error;
11. Else If all residual boxes could be packed in the layers of set N’ but not all of them could be
packed in the layers of set N''(2)
12. Keep only the incomplete layers obtained with the FF heuristic (the FF heuristic is chosen):
N =N"M;
13. Else If all residual boxes could be packed in the layers of set N’'®, but not all of them could be
packed in the layers of set N''(1)
14. Keep only the incomplete layers obtained with the BF heuristic (the BF heuristic is chosen):
N" =N"®;
15. Otherwise all residual boxes could be packed either in the layers of set N "M or in the layers of set
N
16. If the total height of the incomplete layers of set N”"(¥) is smaller than the total height of the
incomplete layers of set N''(®
17. Keep only the incomplete layers obtained with the FF heuristic (the FF heuristic is chosen):
N" =N"W;
18. Otherwise
19. Keep only the incomplete layers obtained with the BF heuristic (the BF heuristic is chosen):
N" =N"®;
20. End gInc()

Fig. 9. Procedure ginc() for generating the incomplete layers.
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1. Begin pRes()
2. Jj=0;
3. Remove the boxes on all incomplete layers j and exclude these layers;
4. Repeat
5. j=j+1;
6. Generate a new incomplete layer (incomplete layer j);
7. Include position (0,0,0) in the initially empty list]**;
8. ¢ = list°™mP[j];
9. Define the limits for the length, width and height for packing the residual boxes in the incomplete
layer j, respectively, as LE™P, W™P and H: ™
10. For countF =1, ..., |list™"|
11. If the box list™®[countF] is already packed
12. Go to step 37 (next box);
13. bestVal = —1;
14. For countPos = 1, ..., |listjp05|
15. Forrot =0tol
16. f = list™*[countF];
17. (p.q1r) = list}”oS [countPos];
18. Define the orientation of the residual box f by rotating it horizontally by 90°;
19. Verify if the residual box f can be placed, with its defined orientation, in position
(p,q,r) of the incomplete layer j with procedures vOver(f,p,q,7,j),
vStack(f,p,q,r,j) and vStab(f,p,q,7,j) (Appendix A);
20. If the residual box f can be placed, with its defined orientation, in position (p, q,r) of
the incomplete layer j
21. IfisBF =1
22. Assign to val the total contact area between the lateral faces (i.e., front, right, left
and back) of the residual box f with the remaining boxes already packed in the
incomplete layer j. To do this calculation, it is considered that the residual box f
is packed, with its defined orientation, in position (p,q,7) of the incomplete
layer j;
23. If val > bestVal
24, bestVal = val;
25. bestPos = (p,q,7);
26. Store the orientation of box f in bestO;
217. Else If
28. Go to step 34;
29. End For
30. End For
31. If the residual box f could be placed in some position of the incomplete layer j
32. (p,q,7) = bestPos;
33. Define the orientation of box f according to bestO;
34. Place the residual box f, with its defined orientation, in position (p, g, 7) of the incomplete
layer j;
35 Add to listjp”s all the positions (see Figure 6 in Appendix A) not yet added to this list. To
this end, it is considered that i = @ (f);
36. Remove from list}ws all the positions that were occupied by the residual box f;
37. End For
38. While there are boxes not packed in list™* and j < |C|;
39. End pRes()

Fig. 10. Procedure pRes() for packing the residual boxes.

1. Begin excL(k)
2. Remove from list,’” (i.e., the identified exceeding layers) all boxes on the Max{|list.’”| —|C|,0}
first complete layers and exclude these layers;

3.  EndexcL(k)

Fig. 11. Procedure excL(k) for identifying and excluding the excess of layers that need to be on the top of some compartment at a stop k.
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1. Begin bLocal()

2. While there are residual boxes not packed

3. Try to assign the not yet packed residual boxes to compartments by solving Model 2 (Appendix
C);

4. If a feasible solution with Model 2 could not be obtained

5. End bLocal()

6. Try to pack the residual boxes in their respective compartments (to which these boxes were
assigned) with procedure g/nc2() (Figure 13);

7. ForceC

8. For f e M’

9. If the residual box f was packed in compartment ¢

10. Fix the variable A, to 1 (i.e., 4. = 1) (Appendix C);

11. Otherwise

12. Fix the variable A¢. to 0 (i.e., A = 0) if some box of the same type of the residual box

f could not be packed in compartment c;

13. End For

14. End For

15. End While

16. End bLocal()

Fig. 12. Procedure bLocal() for seeking an alternative packing for the residual boxes.

1. Begin glnc2()

2. Define the following auxiliary variables (lists and sets) initially empty: listPoS(), [istPos(D),
list”"s(z), N"(*), N"M and N”(2);

3. Store a copy of the initial solution obtained for the incomplete layers: listP*S(*) = [istP°S and
NN(*) = NH.

4. Activate the FF heuristic;

5. Try to pack the residual boxes in incomplete layers with procedure pRes2() (Figure 14);

6. Store a copy of the partial solution obtained for the incomplete layers: listPosMW) = [istP%S and
NH(1) = NH,

7. Restore the initial solution obtained for the incomplete layers: list??S = listP*s®) and N = N"'®);

8. Activate the BF heuristic;

9. Try again to pack the residual boxes in incomplete layers with procedure pRes2();

10. Store a copy of the partial solution obtained for the incomplete layers: listP*s® = [istP°S and
Nn(z) = NN,

11 If the total volume of the residual boxes packed in the incomplete layers of set N'"™) is larger than
the total volume of the residual boxes packed in the incomplete layers of set N''?)

12. Keep only the partial solution obtained with the FF heuristic (the FF heuristic is chosen): N =

N"® and listP°S = listPos(D);
13. Otherwise
14. Keep only the partial solution obtained with the BF heuristic (the BF heuristic is chosen): N =
N"® and listPs = [istPos@);
15. End gInc2()

Fig. 13. Procedure ginc2() for generating the incomplete layers.



488

R. Ranck Jiinior, H.H. Yanasse and R. Morabito et al./Expert Systems With Applications 137 (2019) 471-492

1. Begin pRes2()

2. For countF =1, ..., |list™5|;

3. If the box list™®® [countF] is already packed

4. Go to step 35 (next box);

5. bestVal = —1;

6. f = list™ [countF];

7. Set ¢ equal to the compartment to which the residual box f is assigned;

8. If there is not yet an incomplete layer placed in compartment ¢

9. Generate a new incomplete layer (incomplete layer c). Note that, without loss of generality,
the index of an incomplete layer was defined as the same index of the compartment where it is
packed (in this case the incomplete layers also store the information of the compartment
where they are placed);

10. Place the incomplete layer ¢ in the last position (i.e., the top) of compartment c;

11. Define the limits for the length and width for packing the residual boxes in the incomplete
layer c, respectively, as L°™P and W €°™P;

12. Define the limit for the height for packing the residual boxes in the incomplete layer ¢ as
H™ minus the sum of the heights of the complete layers that possibly are packed in this
compartment;

13. Include position (0,0,0) in the initially empty list?"*;

14. For countPos = 1, ..., |list?”|

15. Forrot =0to 1

16. (»,q,7) = list?*[countPos];

17. Define the orientation of the residual box f by rotating it horizontally by 90°;

18. If the residual box f can be placed, with its defined orientation, in position (p, g, 7) of the

incomplete layer ¢

19. If isBF =1

20. Assign to val the total contact area between the lateral faces (i.e., front, right, left

and back) of the residual box f with the remaining boxes already packed in the
incomplete layer c. To do this calculation, it is considered that the residual box f is
packed, with its defined orientation, in position (p, g, ) of the incomplete layer c;

21. If val > bestVal

22. bestVal = val;

23. bestPos = (p,q,7);

24. Store the orientation of box f in bestO;

25. Else If

26. Go to step 32;

27. End For

28. End For

29. If the residual box f could be placed in some position of the incomplete layer ¢

30. (p,q,7) = bestPos;

31. Define the orientation of box f according to bestO;

32. Place the residual box f, with its defined orientation, in position (p,q,r) of the incomplete
layer c;

3 Add to list?® all the positions (see Figure 6 in Appendix A) not yet added to this list. To this
end, it is considered that i = ¢(f);

34. Remove from list?* all the positions that were occupied by the residual box f;

35. End For

36. End pRes2()

Fig. 14. Procedure pRes2() for packing the residual boxes.
1. Begin glnstl()
2. For aux = 2, ...,10
3. Define an initially empty instance (instance auxR);
4. Define the container of instance auxR as the container of instance 1R;
5. k'=1;
6. While there are stops from instance 1R not chosen for the generation of instance auxR
7. Randomly select a stop k from instance 1R not yet chosen for the generation of instance
auxR;
8. Define the demand of stop k' of instance auxR as the demand of stop k of instance IR;
9. k'=k+1;
10. End While
11. End For
12. End glnstI()

Fig. 15. Procedure ginst1() for the generation of the problem instances 2R,...,10R of Class 1.
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1. Begin glnst2()

2. For aux =1, ...,200

3. Define an initially empty instance (instance auxA);

4, Define the following parameters for generating instance auxA: k™, v™ and the container,
according to Table 5; n™* and b™* (see Section 5.2);

5 totalVol = 0; continue = 1;

6. Define two auxiliary lists L and L¢ initially empty;

7. Randomly select n™* different box types from Table 3 and store them in list L¢;

8 While continue = 1

9 If list L® is empty

10. Store in list L* the stops 1, ..., k™;

11. Randomly select a stop k from list L° and remove it from this list;

12. Randomly select a box type i from list Lf;

13. Randomly select an integer value & between [1, ..., b/™];

14. If totalVol + (£v]%) < v™*yrel

15. totalVol = totalVol + (£vI®);

16. Add ¢ units to the demand of the box of type i and stop k of instance auxA;

17. Otherwise

18. Add [ (™ VT — totalVol)/v}® | units to the demand of the box of type i and stop k of instance

auxA,

19. continue = 0;

20. End While

21. End For

22. End glnst2()

Fig. 16. Procedure ginst2() for the generation of the problem instances of Classes 2 to 21.

Appendix C. Mathematical Formulations

The geometric arrangement of the complete and incomplete
layers inside a compartment can be seen as a one-dimensional
packing problem (with additional loading constraints). For this rea-
son, note that it is not necessary to know the absolute position of
each layer in the compartment, but only the order in which they
are placed in this compartment, i.e., their relative positions, which
are then considered in the formulations that follow. Note that the
relative positions for placing a layer in a compartment start in 1,
and not in 0, as in the case of the absolute positions.

Model 1 (i.e., expressions (1)-(16)) in the following aims at

packing all boxes in the vehicle compartments considering all con-
straints and the problem objective function. However, Model 1 rep-
resents a simplified version of the problem, once the boxes must
be all packed in the compartments by means of complete and in-
complete layers, which were already generated in previous steps
of the heuristic. Consider the following decision variables to this
formulation:
Variables:
g gi . free (auxiliary) decision variables that define the real po-
sition of the center of gravity of the cargo, when only
boxes from stops k' > k € K are inside the vehicle, respec-
tively along axes x and y. This center of gravity is defined
using the Cartesian coordinate system for the container,
whose position (0,0,0) is located at the FBLC of the con-
tainer;

Yjsc: binary decision variable that is equal to 1 if layer j € N is
placed in position s € S; of compartment ¢ € C, and it is
equal to 0 otherwise;

Zjg: binary decision variable that is equal to 1 if layer j € N

has boxes from stops k’ > k € K and it is placed above an-

other layer that has boxes from stop k. In this case, these

boxes from stops k’ will need to be relocated at stop k.

Otherwise, it is equal to 0;

non-negative decision variables that define the vehicle

load balancing deviations (i.e., unbalancing), when only

boxes from stops k' > k € K are inside the vehicle, re-

spectively along axes x and y.

0x. 6

Model 1
Formulation:
Min o Z Z (wquij + prle<+1)ij + wie Z (Q,f + 9,{)
keK\{|K|} jeN o
(1)
Zzyjsczl jEN (2)
ceC seSjc
Z ZHJ.Vjscf H, ceC (3)
JjeN seSjc
ZYjscil ceCseS: (4)
jeN’
Zyjscfl ceCs=puc+1 (5)
jeN”
&= ZZ Z Pfk(pf'i"[j(k)yjsc /PkA keK (6)
jeN ceC seSjc
gJ’:: ZZ Z ij(qC+TJ)‘;<)Yjsc /PkA keK (7)
jeN ceC seS;c
> pA — g¥X) _ X
?_Z(gf{x g) X keK (8)
>Po(e"—g) -
>PA J _ gly —gy
y = P (g, - &%) ke K ©

CzRMev-g) - ¢

Z Yijse = Z PjjYjsc

{S/ c Scl} jeN'

jeN;ceCseS\{u (10)

s>s
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Yise < 2 Pij Yise + <1 - yjsc) jeN"ceCseS: (1)
jeN’ jeN'
S =pc+1

M(l *Yj’sc) JFéj’Yj’sc > Z Z ijyjs’c /nj’k
JjeN S/ESJ'C|
s'>s
keK;jeN;ceCseSamy#0 (12)

Z e;k.)’j’s’c - Zj’k <1- Z ejkyjsc
jeN’

s’ ES]‘/C|
R (13)

ke K\{|K|};jeN;ceC;seS
0. 6] =0 kek
Yjsc € {0. 1} jeN:iceCseS. (14)
Zy € {0, 1} jeN;keKk\{K|}

The objective function (1) aims at minimizing the penalties for
the handling of boxes along the route (first parcel) and the penal-
ties for the load balancing deviations (second parcel). Note that
in this expression Qj,; 1 and Py, 1 respectively correspond to the
number and weight of boxes on layer j € N that will be relocated
at stop k € Kif Zj, = 1.

Constraints (2) ensure that all layers j € N are packed in the
compartments. Note that these constraints also ensure that a layer
j € N is only placed in positions s € S, ¢ € C, assigned to it. Con-
straints (3) ensure that the height of a layer stack placed in a com-
partment ¢ € C is not larger than the height of this compartment.
Constraints (4)-(5) ensure that no more than one layer j € N occu-
pies any position in a compartment ¢ € C. Note that this condition
is sufficient to avoid that the layers overlap each other inside a
compartment.

Constraints (6)-(7) define the auxiliary variables gy and gJ,i re-
spectively. Note in these constraints that (p¢ + tjxk) and (g€ + r}’k)
correspond to the position of the center of gravity of a layer j € N,
respectively along axes x and y. Constraints (8)-(9) define the load
balancing deviations along axes x and y. These load balancing devi-
ations, when only boxes from stops k' > k € K are inside the vehi-
cle, are given by the absolute distance between the real position of
the center of gravity of the cargo and the ideal position of the cen-
ter of gravity of the vehicle, weighted by the cargo weight inside
the vehicle. These deviations are accounted for if they are larger
than the tolerances ¢* and &Y, respectively, along axes x and y. We
note that these constraints are only valid together with the objec-
tive function (1), that penalizes these deviations. Note also that, to
hold the linearity of this formulation, an absolute value function is
defined, without loss of generality, with two linear inequalities.

Constraints (10) ensure that a complete layer j/ ¢ N’ can only
be placed in a position s’ € S¢|s’ > s of compartment ¢ € C (i.e.,
Yyge=1), if in any position s € Sc below it in this compartment
there is another complete layer j € N’ that can vertically stabi-
lize it (i.e., pjy¥jsc=1). Note that these constraints never prevent a
complete layer j' to be placed in position s’ =1 of compartment c,
because in this case layer j’ is vertically stabilized by the compart-
ment floor. Note also that these constraints do not allow a com-
plete layer j/ to be placed above a position that is not occupied
by any other layer (i.e., generating a “hole” in the compartment).
Constraints (11) ensure that an incomplete layer j/ € N” can only
be placed in the position s’=pu.+1 of compartment ¢ € C, if in

each position s € S¢ below it in this compartment: there is a com-
plete layer j € N’ that can vertically stabilize it (i.e., PjjYisc= 1); or
there is no layer (i.e, Y yjs = 0). Note that it is allowed to place
jeN’

an incomplete layer j/ € N’/ above a position that is not occupied
by any other layer, once it was defined that the incomplete layers
can only be placed in the last position (u+ 1) of some compart-
ment c € C (so they are never below another layer).

Constraints (12) ensure that, when only boxes from stops k' > k
€ K are inside the vehicle, the pressure applied over any point on
the top face of a box on the complete layer j’ € N’ placed in posi-
tion s € Sc of compartment ¢ € C is not larger than the maximum
pressure than can be supported by that point (i.e., 6y ). This
pressure is given by the weight of layers j € N placed in positions
s’ € Sc above the complete layer j/ in the same compartment c e
C, divided by the sum of the areas of the top faces of boxes placed
on the complete layer j’. Note that if the complete layer j’ is not in
the evaluated position (i.e., yj,sc=0), these constraints are redun-
dant. We also note that here were considered assumptions A7 and
A8 at the beginning of Section 4.

Constraints (13) ensure that if a layer j' € N that has boxes from
stops k' > k € K is placed in a position s’ € Spe (e, ej?,kyj/s/c =1)
above a complete layer j € N’ that has boxes from stop k placed
in a position s € S¢ (i.e., ejyjc=1) of the same compartment ¢ €
C, then the boxes on layer j/ from stops k' will need to be relo-
cated at stop k (i.e, Zjy, = 1). Note that this handling of boxes is
penalized in the objective function (1). Constraints (14) define the
domain of the decision variables. Note that variables Z;, are not
defined to k=|K|, because in the last vehicle stop the boxes from
previous stops will have already been unloaded, and therefore it
will no longer be necessary to relocate boxes.

It is considered that minimizing the handling of boxes has
larger priority with relation to minimizing the load balancing, as it
was stated in assumption A2 at the beginning of Section 4. There-
fore, the penalized load balancing deviations, w?? Y OF + 9,’(’), are

keK

defined in such a way that they are smaller than the smallest
penalized relocated unit, w?[w?l + Min; ¢ p(w?P;)]. Note that the
upper bounds on variables 6 and 6,{ are respectively given by
PAL —&* and PAW — V. Therefore, the relative weight for the load
balancing deviations is defined as:

wler — W™ + Min,-em(w”’l’f)]/[l +Y (PAL— &+ PAW — ey)]
keK

(15)

The bound fi is given by the following relation that uses the
smallest of two known upper bounds (. and [,LZ) on the number
of complete layers in a compartment c € C:

te = IN'I/ICl + ¢ [Min(p. 1ac) — IN'l/|C]] ceC  (16)
Model 2 (i.e., expressions (8)-(9), (17)-(25)) in the following is
used by the local search procedure of the heuristic (see Fig. 12 in
Appendix B) to assign the residual boxes to the container com-
partments, where the complete layers are already packed, aiming
at considering all constraints and the problem objective function.
Consider the following decision variables to this formulation:
Variables:
Afe: binary decision variable that is equal to 1 if box f € M’
is assigned to compartment ¢ € C, and it is equal to 0
otherwise.

Model 2
Formulation:

Min o Z ZQFC(Q)ZQ +Q)pr(p(f)))\fc+ wdevZ(@? +9,¥) (17)

feM’ ceC keK
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2 lopWounhgiphse < LOMPWETP (HE‘””" - jg, SEZSC hiy }“) ceC (19)
feM!

hyipyrse < (Hccomp - XX hfyj‘sc) feM;ceC (20)

jeN’ seS¢

A < Pfe feM;ceC (21)

> Popephie < PE™ ceCkekK (22)

feM’
le\:/l’ Zcej%kﬂp( £)(Pe + LM/ 2) A g+
g=|"" /PA keK (23)
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€ 13
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g =T /PA keK (24)
k jgw ceXéseZs: ij(qc + TJ)L) y;'sc k
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The objective function (17) aims at minimizing the penalties for
the handling of residual boxes along the route (first parcel) and the
penalties for the load balancing deviations (second parcel). Note
that this objective function assumes that the residual boxes are
all packed in the compartments to which they are assigned. Con-
straints (18) ensure that all residual boxes are assigned to compart-
ments ¢ e C. Constraints (19) ensure that the total volume of resid-
ual boxes f € M’ assigned to compartment ¢ e C is not larger than
the available volume in this compartment, given by the total vol-
ume of the compartment minus the volume occupied by complete
layers that may already be packed in it. Constraints (20) ensure
that a residual box f € M’ is not assigned to a compartment ¢ ¢
C with available height smaller than the box height. This available
height is given by the height of compartment ¢ minus the total
height of the stack of complete layers that may already be packed
in it. Constraints (21) ensure that a residual box f € M’ is only as-
signed to a compartment ¢ € C that provides vertical support to
it (i.e,, p}c = 1). Constraints (22) limit to PR%, for any stop k € K,
the total weight of the residual boxes assigned to a compartment
¢ € C. Constraints (8)-(9) and (23)-(24) have the same role as con-
straints (6)-(9) previously defined. The center of gravity of the set
of residual boxes assigned to a compartment is estimated in the
geometric center of this compartment. Constraints (25) define the
domain of the decision variables.
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